130 research outputs found

    Characterisation of exacerbation risk and exacerbator phenotypes in the POET-COPD trial

    Get PDF
    Background: Data examining the characteristics of patients with frequent exacerbations of chronic obstructive pulmonary disease (COPD) and associated hospitalisations and mortality are scarce. Methods: Post-hoc analysis of the Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) trial, targeting exacerbations as the primary endpoint. Patients were classified as non-, infrequent, and frequent exacerbators (0, 1, or >= 2 exacerbations during study treatment), irrespective of study treatment. A multivariate Cox regression model assessed the effect of covariates on time to first exacerbation. Results: In total, 7376 patients were included in the analysis: 63.5% non-exacerbators, 22.9% infrequent, 13.6% frequent exacerbators. Factors significantly associated with exacerbation risk were age, sex, body mass index, COPD duration and severity, smoking history, baseline inhaled corticosteroid use, and preceding antibiotic or systemic corticosteroid courses. Frequent exacerbators had greater severity and duration of COPD, received more pulmonary medication, and >= 2 systemic corticosteroid or antibiotic courses in the preceding year, and were more likely to be female and ex-smokers. The small proportion of frequent exacerbators (13.6%) accounted for 56.6% of exacerbation-related hospitalisations, which, overall, were associated with a three-fold increase in mortality. Conclusion: The frequent exacerbator phenotype was closely associated with exacerbation-related hospitalisations, and exacerbation-related hospitalisations were associated with poorer surviva

    Comparison of MR‐guided radiotherapy accumulated doses for central lung tumors with non‐adaptive and online adaptive proton therapy

    Get PDF
    Background Stereotactic body radiation therapy (SBRT) of central lung tumors with photon or proton therapy has a risk of increased toxicity. Treatment planning studies comparing accumulated doses for state-of-the-art treatment techniques, such as MR-guided radiotherapy (MRgRT) and intensity modulated proton therapy (IMPT), are currently lacking. Purpose We conducted a comparison of accumulated doses for MRgRT, robustly optimized non-adaptive IMPT, and online adaptive IMPT for central lung tumors. A special focus was set on analyzing the accumulated doses to the bronchial tree, a parameter linked to high-grade toxicities. Methods Data of 18 early-stage central lung tumor patients, treated at a 0.35 T MR-linac in eight or five fractions, were analyzed. Three gated treatment scenarios were compared: (S1) online adaptive MRgRT, (S2) non-adaptive IMPT, and (S3) online adaptive IMPT. The treatment plans were recalculated or reoptimized on the daily imaging data acquired during MRgRT, and accumulated over all treatment fractions. Accumulated dose-volume histogram (DVH) parameters of the gross tumor volume (GTV), lung, heart, and organs-at-risk (OARs) within 2 cm of the planning target volume (PTV) were extracted for each scenario and compared in Wilcoxon signed-rank tests between S1 & S2, and S1 & S3. Results The accumulated GTV D98% was above the prescribed dose for all patients and scenarios. Significant reductions (p < 0.05) of the mean ipsilateral lung dose (S2: –8%; S3: –23%) and mean heart dose (S2: –79%; S3: –83%) were observed for both proton scenarios compared to S1. The bronchial tree D0.1cc was significantly lower for S3 (S1: 48.1 Gy; S3: 39.2 Gy; p = 0.005), but not significantly different for S2 (S2: 45.0 Gy; p = 0.094), compared to S1. The D0.1cc for S2 and S3 compared to S1 was significantly (p < 0.05) smaller for OARs within 1–2 cm of the PTV (S1: 30.2 Gy; S2: 24.6 Gy; S3: 23.1 Gy), but not significantly different for OARs within 1 cm of the PTV. Conclusions A significant dose sparing potential of non-adaptive and online adaptive proton therapy compared to MRgRT for OARs in close, but not direct proximity of central lung tumors was identified. The near-maximum dose to the bronchial tree was not significantly different for MRgRT and non-adaptive IMPT. Online adaptive IMPT achieved significantly lower doses to the bronchial tree compared to MRgRT

    Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD

    Get PDF
    Background: COPD influences cardiac function and morphology. Changes of the electrical heart axes have been largely attributed to a supposed increased right heart load in the past, whereas a potential involvement of the left heart has not been sufficiently addressed. It is not known to which extent these alterations are due to changes in lung function parameters. We therefore quantified the relationship between airway obstruction, lung hyperinflation, several echo- and electrocardiographic parameters on the orientation of the electrocardiographic (ECG) P, QRS and T wave axis in COPD. Methods: Data from the COPD cohort COSYCONET were analyzed, using forced expiratory volume in 1 s (FEV1), functional residual capacity (FRC), left ventricular (LV) mass, and ECG data. Results: One thousand, one hundred and ninety-five patients fulfilled the inclusion criteria (mean ± SD age: 63.9 ± 8.4 years; GOLD 0–4: 175/107/468/363/82). Left ventricular (LV) mass decreased from GOLD grades 1–4 (p = 0.002), whereas no differences in right ventricular wall thickness were observed. All three ECG axes were significantly associated with FEV1 and FRC. The QRS axes according to GOLD grades 0–4 were (mean ± SD): 26.2° ± 37.5°, 27.0° ± 37.7°, 31.7° ± 42.5°, 46.6° ± 42.2°, 47.4° ± 49.4°. Effects of lung function resulted in a clockwise rotation of the axes by 25°-30° in COPD with severe airway disease. There were additional associations with BMI, diastolic blood pressure, RR interval, QT duration and LV mass. Conclusion: Significant clockwise rotations of the electrical axes as a function of airway obstruction and lung hyperinflation were shown. The changes are likely to result from both a change of the anatomical orientation of the heart within the thoracic cavity and a reduced LV mass in COPD. The influences on the electrical axes reach an extent that could bias the ECG interpretation. The magnitude of lung function impairment should be taken into account to uncover other cardiac disease and to prevent misdiagnosis

    Effects of airway obstruction and hyperinflation on electrocardiographic axes in COPD

    Get PDF
    BackgroundCOPD influences cardiac function and morphology. Changes of the electrical heart axes have been largely attributed to a supposed increased right heart load in the past, whereas a potential involvement of the left heart has not been sufficiently addressed. It is not known to which extent these alterations are due to changes in lung function parameters. We therefore quantified the relationship between airway obstruction, lung hyperinflation, several echo- and electrocardiographic parameters on the orientation of the electrocardiographic (ECG) P, QRS and T wave axis in COPD.MethodsData from the COPD cohort COSYCONET were analyzed, using forced expiratory volume in 1s (FEV1), functional residual capacity (FRC), left ventricular (LV) mass, and ECG data.ResultsOne thousand, one hundred and ninety-five patients fulfilled the inclusion criteria (meanSD age: 63.9 +/- 8.4years;GOLD 0-4: 175/107/468/363/82). Left ventricular (LV) mass decreased from GOLD grades 1-4 (p=0.002), whereas no differences in right ventricular wall thickness were observed. All three ECG axes were significantly associated with FEV1 and FRC. The QRS axes according to GOLD grades 0-4 were (mean +/- SD): 26.2 degrees +/- 37.5 degrees, 27.0 degrees +/- 37.7 degrees, 31.7 degrees +/- 42.5 degrees, 46.6 degrees +/- 42.2 degrees, 47.4 degrees +/- 49.4 degrees. Effects of lung function resulted in a clockwise rotation of the axes by 25 degrees-30 degrees in COPD with severe airway disease. There were additional associations with BMI, diastolic blood pressure, RR interval, QT duration and LV mass.Conclusion Significant clockwise rotations of the electrical axes as a function of airway obstruction and lung hyperinflation were shown. The changes are likely to result from both a change of the anatomical orientation of the heart within the thoracic cavity and a reduced LV mass in COPD. The influences on the electrical axes reach an extent that could bias the ECG interpretation. The magnitude of lung function impairment should be taken into account to uncover other cardiac disease and to prevent misdiagnosis

    Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy

    Get PDF
    Objective. Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior–inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs. Approach. We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (offline LSTM and offline LR) and online schemes (offline+online LSTM and online LR), the latter to allow for continuous adaptation to recent respiratory patterns. Main results. We found the offline+online LSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively. Significance. This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance

    Risk Assessment for Patients with Chronic Respiratory Conditions in the Context of the SARS-CoV-2 Pandemic Statement of the German Respiratory Society with the Support of the German Association of Chest Physicians

    Get PDF
    Assessing the risk for specific patient groups to suffer from severe courses of COVID-19 is of major importance in the current SARS-CoV-2 pandemic. This review focusses on the risk for specific patient groups with chronic respiratory conditions, such as patients with asthma, chronic obstructive pulmonary disease, cystic fibrosis (CF), sarcoidosis, interstitial lung diseases, lung cancer, sleep apnea, tuberculosis, neuromuscular diseases, a history of pulmonary embolism, and patients with lung transplants. Evidence and recommendations are detailed in exemplary cases. While some patient groups with chronic respiratory conditions have an increased risk for severe courses of COVID-19, an increasing number of studies confirm that asthma is not a risk factor for severe COVID-19. However, other risk factors such as higher age, obesity, male gender, diabetes, cardiovascular diseases, chronic kidney or liver disease, cerebrovascular and neurological disease, and various immunodeficiencies or treatments with immunosuppressants need to be taken into account when assessing the risk for severe COVID-19 in patients with chronic respiratory diseases

    Asthma in the elderly: what we know and what we have yet to know

    Get PDF
    In the past, asthma was considered mainly as a childhood disease. However, asthma is an important cause of morbidity and mortality in the elderly nowadays. In addition, the burden of asthma is more significant in the elderly than in their younger counterparts, particularly with regard to mortality, hospitalization, medical costs or health-related quality of life. Nevertheless, asthma in the elderly is still been underdiagnosed and undertreated. Therefore, it is an imperative task to recognize our current challenges and to set future directions. This project aims to review the current literature and identify unmet needs in the fields of research and practice for asthma in the elderly. This will enable us to find new research directions, propose new therapeutic strategies, and ultimately improve outcomes for elderly people with asthma. There are data to suggest that asthma in older adults is phenotypically different from young patients, with potential impact on the diagnosis, assessment and management in this population. The diagnosis of AIE in older populations relies on the same clinical findings and diagnostic tests used in younger populations, but the interpretation of the clinical data is more difficult. The challenge today is to encourage new research in AIE but to use the existing knowledge we have to make the diagnosis of AIE, educate the patient, develop a therapeutic approach to control the disease, and ultimately provide a better quality of life to our elderly patients
    corecore