16 research outputs found

    Time integration scheme for elastoplastic models based on anisotropic strain-rate potentials

    Get PDF
    Modelling of plastic anisotropy requires the definition of stress potentials (coinciding with the yield criteria in case of the associated flow rules) or, alternatively, plastic strain-rate potentials. The latter approach has several advantages whenever material parameters are determined by means of texture measurements and crystal plasticity simulations. This paper deals with a phenomenological description of anisotropy in elastoplastic rate-insensitive models, by using strain-rate potentials. A fully implicit time integration algorithm is developed in this framework and implemented in a static-implicit finite element code. Algorithmic details are discussed, including the derivation of the consistent (algorithmic) tangent modulus and the numerical treatment of the yield condition. Typical sheet-forming applications are simulated with the proposed implementation, using the recent non-quadratic strain-rate potential Srp2004-18p. Numerical simulations are carried out for materials that exhibit strong plastic anisotropy. The numerical results confirm that the presented algorithm exhibits the same generality, robustness, accuracy, and time-efficiency as state-of-the-art yield-criterion-based algorithms.International audienceModelling of plastic anisotropy requires the definition of stress potentials (coinciding with the yield criteria in case of the associated flow rules) or, alternatively, plastic strain-rate potentials. The latter approach has several advantages whenever material parameters are determined by means of texture measurements and crystal plasticity simulations. This paper deals with a phenomenological description of anisotropy in elastoplastic rate-insensitive models, by using strain-rate potentials. A fully implicit time integration algorithm is developed in this framework and implemented in a static-implicit finite element code. Algorithmic details are discussed, including the derivation of the consistent (algorithmic) tangent modulus and the numerical treatment of the yield condition. Typical sheet-forming applications are simulated with the proposed implementation, using the recent non-quadratic strain-rate potential Srp2004-18p. Numerical simulations are carried out for materials that exhibit strong plastic anisotropy. The numerical results confirm that the presented algorithm exhibits the same generality, robustness, accuracy, and time-efficiency as state-of-the-art yield-criterion-based algorithms

    Numerical simulation of sheet metal forming using anisotropic strain-rate potentials

    Get PDF
    For numerical simulation of sheet metal forming, more and more advanced phenomenological functions are used to model the anisotropic yielding. The latter can be described by an adjustment of the coefficients of the yield function or the strain rate potential to the polycrystalline yield surface determined using crystal plasticity and X-ray measurements. Several strain rate potentials were examined by the present authors and compared in order to analyse their ability to model the anisotropic behaviour of materials using the methods described above to determine the material parameters. Following that, a specific elastic-plastic time integration scheme was developed and the strain rate potentials were implemented in the FE code. Comparison of the previously investigated potentials is continued in this paper in terms of numerical predictions of cup drawing, for different bcc and fcc materials. The identification procedure is shown to have an important impact on the accuracy of the FE predictions.International audienceFor numerical simulation of sheet metal forming, more and more advanced phenomenological functions are used to model the anisotropic yielding. The latter can be described by an adjustment of the coefficients of the yield function or the strain rate potential to the polycrystalline yield surface determined using crystal plasticity and X-ray measurements. Several strain rate potentials were examined by the present authors and compared in order to analyse their ability to model the anisotropic behaviour of materials using the methods described above to determine the material parameters. Following that, a specific elastic-plastic time integration scheme was developed and the strain rate potentials were implemented in the FE code. Comparison of the previously investigated potentials is continued in this paper in terms of numerical predictions of cup drawing, for different bcc and fcc materials. The identification procedure is shown to have an important impact on the accuracy of the FE predictions

    Orthotropic strain rate potentials using multiple linear transformations

    Get PDF
    This paper reviews a class of anisotropic plastic strain-rate potentials, based on linear transformations of the plastic strain-rate tensor. A new formulation is proposed, which includes former models as particular cases and allows for an arbitrary number of linear transformations, involving an increasing number of anisotropy parameters. The formulation is convex and fully three-dimensional, thus being suitable for computer implementation in finite element codes. The parameter identification procedure uses a micromechanical model to generate evenly distributed reference points in the full space of possible loading modes. Material parameters are determined for several anisotropic, fcc and bcc sheet metals, and the gain in accuracy of the new models is demonstrated. For the considered materials, increasing the number of linear transformations leads to a systematic improvement of the accuracy, up to a number of five linear transformations. The proposed model fits very closely the predictions of the micromechanical model in the whole space of plastic strain-rate directions. The r-values, which are not directly used in the identification procedure, served for the validation of the models and to demonstrate their improved accuracy

    Time integration scheme for elastoplastic models based on anisotropic strain-rate potentials

    Get PDF
    Modelling of plastic anisotropy requires the definition of stress potentials (coinciding with the yield criteria in case of the associated flow rules) or, alternatively, plastic strain-rate potentials. The latter approach has several advantages whenever material parameters are determined by means of texture measurements and crystal plasticity simulations. This paper deals with a phenomenological description of anisotropy in elastoplastic rate-insensitive models, by using strain-rate potentials. A fully implicit time integration algorithm is developed in this framework and implemented in a static-implicit finite element code. Algorithmic details are discussed, including the derivation of the consistent (algorithmic) tangent modulus and the numerical treatment of the yield condition. Typical sheet-forming applications are simulated with the proposed implementation, using the recent non-quadratic strain-rate potential Srp2004-18p. Numerical simulations are carried out for materials that exhibit strong plastic anisotropy. The numerical results confirm that the presented algorithm exhibits the same generality, robustness, accuracy, and time-efficiency as state-of-the-art yield-criterion-based algorithms.Financement RĂ©gion Lorrain

    PARAMETER IDENTIFICATION OF ADVANCED PLASTIC POTENTIALS AND IMPACT ON PLASTIC ANISOTROPY PREDICTION

    Get PDF
    In the work presented in this paper, several strain rate potentials are examined in order to analyze their ability to model the initial stress and strain anisotropy of several orthotropic sheet materials. Classical quadratic and more advanced non-quadratic strain rate potentials are investigated in the case of FCC and BCC polycrystals. Different identifications procedures are proposed, which are taking into account the crystallographic texture and/or a set of mechanical test data in the determination of the material parameters.International audienceIn the work presented in this paper, several strain rate potentials are examined in order to analyze their ability to model the initial stress and strain anisotropy of several orthotropic sheet materials. Classical quadratic and more advanced non-quadratic strain rate potentials are investigated in the case of FCC and BCC polycrystals. Different identifications procedures are proposed, which are taking into account the crystallographic texture and/or a set of mechanical test data in the determination of the material parameters

    Parameter identification of advanced plastic potentials and impact on plastic anisotropy prediction

    Get PDF
    In the work presented in this paper, several strain rate potentials are examined in order to analyze their ability to model the initial stress and strain anisotropy of several orthotropic sheet materials. Classical quadratic and more advanced non-quadratic strain rate potentials are investigated in the case of FCC and BCC polycrystals. Different identifications procedures are proposed, which are taking into account the crystallographic texture and/or a set of mechanical test data in the determination of the material parameters

    Modélisation de l'anisotropie plastique et application à la mise en forme des tôles métalliques

    No full text
    This research work, realized in two laboratories (LPMM of ENSAM of Metz and LPMTM of Paris 13 university) proposed to study the plastic anisotropy of sheet metals during forming operations. The applications in mind concern the prediction, through the forming process numerical simulation, of the initial plastic anisotropy and its influence on the global behaviour of the sheet. An anisotropy that manifest, during forming operation, by the apparition of undulations on the sheet edge. To do this, a class of strain rate potential has been introduced. Potential written in the frame of so called dual approach (less commonly used), where the introduce variable is the plastic strain rate, contrary to the classical approach (commonly used), where the criterion is defined with stress tensor. In addition, the material work-hardening has been considered by introducing internal variables. A large study has been devoted to the identification of the different criteria introduced, basing on the experimental data, as well as those of material texture measure. The materials under study are some steel grades and aluminium alloys. Different identification strategies have been investigated, in order to insure of the good determination of the behaviour model parameters. To allow the exploitation of the different criteria in the frame of the forming process simulation, a robust and efficient computer implementation has been performed in a finite element code. A solver routine following implicit time integration scheme has been developed in order to obtain a good accuracy. The modelling has been applied to the prediction of anisotropic coefficient. This study highlighted the capability of each criterion to reproduce the strong plastic anisotropies. Then, the application of this modelling to the study of deep drawing corns has been realized and allowed to show the effects of the criterion on the number of the formed corns as well as there pronunciation degree. A correlation between the Lankford coefficient and the deep drawing corns has been establishedCe travail de recherche, réalisé au sein de deux laboratoires (LPMM à l'ENSAM de Metz et LPMTM à l'Université Paris 13), se propose d?étudier l'anisotropie plastique des tôles métalliques lors d'opérations de mise en forme. Les applications visées sont la prédiction, au moyen de la simulation numérique du procédé, de l'anisotropie plastique initiale et son influence sur le comportement global de la tôle. Une anisotropie qui se manifeste lors de l'opération de mise en forme par l'apparition d'ondulations aux bords de la tôle. A cette fin, toute une classe de potentiel plastique a été introduite. Des potentiels écrits dans le cadre d'une approche dite duale (moins couramment utilisée) où la grandeur introduite est le taux de déformation plastique, contrairement à l'approche classique (largement utilisée) où le critère est défini en contrainte. De plus, l'écrouissage du matériau a été pris en compte à travers l'introduction de variables internes. Toute une étude à été consacrée à l'identification des différents critères introduit en ce basant sur des données expérimentales, ainsi qu'à celles issus de la mesure de texture du matériau. Les matériaux étudiés à cet effet sont des nuances d'acier et des alliages d'aluminium. Deux stratégies d'identification ont été explorées afin de s'assurer de la bonne détermination des paramètres du modèle de comportement. Pour permettre l'exploitation des différent critères dans le cadre de la simulation numérique des procédés de mise en forme, une implantation numérique robuste et efficace a été réalisée dans un code de calcul par éléments finis. Une routine de résolution du comportement suivant un schéma d'intégration implicite a été développée afin d'obtenir une bonne précision des calculs. La modélisation a d'abord été appliquée à la prédiction de coefficients d'anisotropie. Cette étude a mis en évidence la capacité de chaque critère à reproduire les fortes anisotropies de plasticité. Par la suite, l'application de cette modélisation à l'étude des cornes d'emboutissage a été réalisé et a permis concrètement de voir les effets du potentiel sur le nombre de cornes formés, ainsi que sur leur degré de prononciation. Une corrélation entre les coefficients de Lankford et les cornes d'emboutissage a été établi

    Plastic anisotrpy modelling and application to the sheet metals forming

    Get PDF
    Ce travail de recherche, réalisé au sein de deux laboratoires (LPMM à l'ENSAM de Metz et LPMTM à l'Université Paris 13), se propose d’étudier l'anisotropie plastique des tôles métalliques lors d'opérations de mise en forme. Les applications visées sont la prédiction, au moyen de la simulation numérique du procédé, de l'anisotropie plastique initiale et son influence sur le comportement global de la tôle. Une anisotropie qui se manifeste lors de l'opération de mise en forme par l'apparition d'ondulations aux bords de la tôle. A cette fin, toute une classe de potentiel plastique a été introduite. Des potentiels écrits dans le cadre d'une approche dite duale (moins couramment utilisée) où la grandeur introduite est le taux de déformation plastique, contrairement à l'approche classique (largement utilisée) où le critère est défini en contrainte. De plus, l'écrouissage du matériau a été pris en compte à travers l'introduction de variables internes. Toute une étude à été consacrée à l'identification des différents critères introduit en ce basant sur des données expérimentales, ainsi qu'à celles issus de la mesure de texture du matériau. Les matériaux étudiés à cet effet sont des nuances d'acier et des alliages d'aluminium. Deux stratégies d'identification ont été explorées afin de s'assurer de la bonne détermination des paramètres du modèle de comportement. Pour permettre l'exploitation des différent critères dans le cadre de la simulation numérique des procédés de mise en forme, une implantation numérique robuste et efficace a été réalisée dans un code de calcul par éléments finis. Une routine de résolution du comportement suivant un schéma d'intégration implicite a été développée afin d'obtenir une bonne précision des calculs. La modélisation a d'abord été appliquée à la prédiction de cœfficients d'anisotropie. Cette étude a mis en évidence la capacité de chaque critère à reproduire les fortes anisotropies de plasticité. Par la suite, l'application de cette modélisation à l'étude des cornes d'emboutissage a été réalisé et a permis concrètement de voir les effets du potentiel sur le nombre de cornes formés, ainsi que sur leur degré de prononciation. Une corrélation entre les coefficients de Lankford et les cornes d'emboutissage a été établieThis research work, realized in two laboratories (LPMM of ENSAM of Metz and LPMTM of Paris 13 university) proposed to study the plastic anisotropy of sheet metals during forming operations. The applications in mind concern the prediction, through the forming process numerical simulation, of the initial plastic anisotropy and its influence on the global behaviour of the sheet. An anisotropy that manifest, during forming operation, by the apparition of undulations on the sheet edge. To do this, a class of strain rate potential has been introduced. Potential written in the frame of so called dual approach (less commonly used), where the introduce variable is the plastic strain rate, contrary to the classical approach (commonly used), where the criterion is defined with stress tensor. In addition, the material work-hardening has been considered by introducing internal variables. A large study has been devoted to the identification of the different criteria introduced, basing on the experimental data, as well as those of material texture measure. The materials under study are some steel grades and aluminium alloys. Different identification strategies have been investigated, in order to insure of the good determination of the behaviour model parameters. To allow the exploitation of the different criteria in the frame of the forming process simulation, a robust and efficient computer implementation has been performed in a finite element code. A solver routine following implicit time integration scheme has been developed in order to obtain a good accuracy. The modelling has been applied to the prediction of anisotropic coefficient. This study highlighted the capability of each criterion to reproduce the strong plastic anisotropies. Then, the application of this modelling to the study of deep drawing corns has been realized and allowed to show the effects of the criterion on the number of the formed corns as well as there pronunciation degree. A correlation between the Lankford coefficient and the deep drawing corns has been establishe

    Plastic anisotrpy modelling and application to the sheet metals forming

    No full text
    Ce travail de recherche, réalisé au sein de deux laboratoires (LPMM à l'ENSAM de Metz et LPMTM à l'Université Paris 13), se propose d’étudier l'anisotropie plastique des tôles métalliques lors d'opérations de mise en forme. Les applications visées sont la prédiction, au moyen de la simulation numérique du procédé, de l'anisotropie plastique initiale et son influence sur le comportement global de la tôle. Une anisotropie qui se manifeste lors de l'opération de mise en forme par l'apparition d'ondulations aux bords de la tôle. A cette fin, toute une classe de potentiel plastique a été introduite. Des potentiels écrits dans le cadre d'une approche dite duale (moins couramment utilisée) où la grandeur introduite est le taux de déformation plastique, contrairement à l'approche classique (largement utilisée) où le critère est défini en contrainte. De plus, l'écrouissage du matériau a été pris en compte à travers l'introduction de variables internes. Toute une étude à été consacrée à l'identification des différents critères introduit en ce basant sur des données expérimentales, ainsi qu'à celles issus de la mesure de texture du matériau. Les matériaux étudiés à cet effet sont des nuances d'acier et des alliages d'aluminium. Deux stratégies d'identification ont été explorées afin de s'assurer de la bonne détermination des paramètres du modèle de comportement. Pour permettre l'exploitation des différent critères dans le cadre de la simulation numérique des procédés de mise en forme, une implantation numérique robuste et efficace a été réalisée dans un code de calcul par éléments finis. Une routine de résolution du comportement suivant un schéma d'intégration implicite a été développée afin d'obtenir une bonne précision des calculs. La modélisation a d'abord été appliquée à la prédiction de cœfficients d'anisotropie. Cette étude a mis en évidence la capacité de chaque critère à reproduire les fortes anisotropies de plasticité. Par la suite, l'application de cette modélisation à l'étude des cornes d'emboutissage a été réalisé et a permis concrètement de voir les effets du potentiel sur le nombre de cornes formés, ainsi que sur leur degré de prononciation. Une corrélation entre les coefficients de Lankford et les cornes d'emboutissage a été établieThis research work, realized in two laboratories (LPMM of ENSAM of Metz and LPMTM of Paris 13 university) proposed to study the plastic anisotropy of sheet metals during forming operations. The applications in mind concern the prediction, through the forming process numerical simulation, of the initial plastic anisotropy and its influence on the global behaviour of the sheet. An anisotropy that manifest, during forming operation, by the apparition of undulations on the sheet edge. To do this, a class of strain rate potential has been introduced. Potential written in the frame of so called dual approach (less commonly used), where the introduce variable is the plastic strain rate, contrary to the classical approach (commonly used), where the criterion is defined with stress tensor. In addition, the material work-hardening has been considered by introducing internal variables. A large study has been devoted to the identification of the different criteria introduced, basing on the experimental data, as well as those of material texture measure. The materials under study are some steel grades and aluminium alloys. Different identification strategies have been investigated, in order to insure of the good determination of the behaviour model parameters. To allow the exploitation of the different criteria in the frame of the forming process simulation, a robust and efficient computer implementation has been performed in a finite element code. A solver routine following implicit time integration scheme has been developed in order to obtain a good accuracy. The modelling has been applied to the prediction of anisotropic coefficient. This study highlighted the capability of each criterion to reproduce the strong plastic anisotropies. Then, the application of this modelling to the study of deep drawing corns has been realized and allowed to show the effects of the criterion on the number of the formed corns as well as there pronunciation degree. A correlation between the Lankford coefficient and the deep drawing corns has been establishe

    Potentiel plastique phénoménologique pour modéliser l'anisotropie plastique des tôles métalliques

    No full text
    International audienceCet article explore une généralisation des potentiels plastiques anisotropes de la famille Srp. Le nombre de paramètres du modèle proposé peut être augmenté arbitrairement, et l’impact de cette augmentation sur sa capacité prédictive est étudié à travers l’application à plusieurs matériaux. Les prédictions du modèle s’améliorent avec l’augmentation du nombre de transformations, jusqu’à cinq. A ce stade, les prédictions du modèle micromécanique de Taylor sont parfaitement reproduites par le nouveau potentiel, appelé Srp2007-N×9p
    corecore