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SUMMARY 

 

Modelling of plastic anisotropy requires the definition of stress potentials (coinciding with the 

yield criteria in case of the associated flow rules) or, alternatively, plastic strain-rate potentials. 

The latter approach has several advantages whenever material parameters are determined by 

means of texture measurements and crystal plasticity simulations. This paper deals with a 

phenomenological description of anisotropy in elastoplastic rate-insensitive models, by using 

strain-rate potentials. A fully implicit time integration algorithm is developed in this framework 

and implemented in a static-implicit finite element code. Algorithmic details are discussed, 

including the derivation of the consistent (algorithmic) tangent modulus and the numerical 

treatment of the yield condition. Typical sheet-forming applications are simulated with the 

proposed implementation, using the recent non-quadratic strain-rate potential Srp2004-18p. 

Numerical simulations are carried out for materials that exhibit strong plastic anisotropy. The 

numerical results confirm that the presented algorithm exhibits the same generality, robustness, 

accuracy, and time-efficiency as state-of-the-art yield-criterion-based algorithms.  
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1 INTRODUCTION 

 

The description of plastic anisotropy is recognized as a key factor for the accuracy of finite 

element simulations of sheet metal forming processes. This is particularly true when final part 

properties, such as springback or forming limits, are to be investigated. The initial plastic 

anisotropy of metal sheets is classically modelled either by micromechanics or 

phenomenological yield criteria, the latter being preferred whenever numerical simulations are 

performed. In order to phenomenologically represent the rate-insensitive, incompressible plastic 

behaviour of materials, classical constitutive models use a yield function (for a yield surface 

description), the associated flow (or normality) rule, and a hardening law. The first two express 

anisotropic relationships between the stress and plastic strain rate components at a given 

material point.  

 

Ziegler [1] and Hill [2] have shown that, based on the plastic work equivalence principle, a 

meaningful strain rate potential can be associated with any convex stress potential (or yield 

surface). Therefore, an alternative approach to describing plastic anisotropy is to provide a strain 

rate potential, which is expressed as a function of the plastic strain rate tensor, while its gradient 

gives the direction of the stress deviator. Arminjon et al. [3, 4] and Van Houtte et al. [5] 

proposed fourth-order and sixth-order strain rate functions, respectively. Barlat and Chung [6], 

Barlat et al. [7], Chung et al. [8], and Kim et al. [9] introduced strain-rate potentials that were 

pseudo-conjugates of yield functions published earlier.  

 

Formally, the stress or strain-rate potential approaches are identical. A strong driving force for 

the development of strain-rate potentials has been their convenient parameter identification by 

means of micro-mechanical calculations based on Taylor-type models [3, 5]. For some 

applications, such as rigid-plastic finite element (FE) simulations [10-12], minimum plastic-

work path calculations [7], inverse one-step analysis [13], and analytical calculations in material 

forming, the strain-rate potential approach can be computationally more convenient. 

Nevertheless, numerical implementation of strain-rate potentials has been also tackled in the 

framework of elastoplasticity. In their finite element implementation, Bacroix and Gilormini 

[14] proposed a solution to overcome the lack of an explicit yield condition in this modelling 

framework. They used a finite-difference tangent modulus and membrane elements to simulate a 

simplified cup drawing process. A method used to derive the algorithmic tangent modulus for 

strain-rate-potential-based elastoplastic models has been proposed by Szabo and Jonas [15]. Van 

Houtte et al. [16], Hoferlin et al. [17], and Li et al. [18, 19] developed implicit FE 

implementations and performed sheet forming simulations with their sixth-order plastic potential 

[5]; Zhou et al. [20, 21] implemented similar fourth-order [4] and sixth-order [22] potentials; 

Kim et al. [23] recently proposed a general plane-stress finite element implementation for use 

with shell elements.  

 

One can note, however, that most of the former computer implementations have been designed 

with feasibility in mind, rather than generality. They were developed for specific strain-rate 

potentials, e.g., those involving complex numerical treatments to deal with convexity issues; 
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hardening models were either oversimplified [14, 20, 21] or very specific [19], with 

microstructural and textural relevance being the main objectives. These developments have been 

conducted in the context of texture-based parameter identification, and hence the materials 

science background has been taken into account throughout the development of the numerical 

scheme. A complete minimization technique has been developed and used to determine the 

intersection of the trial stress increment with the yield surface, which is not really a requirement 

for the return mapping algorithm.  

 

On the other hand, strain-rate potentials have been originally proposed for specific applications, 

whereas yield criteria were considered better suited for the elastoplastic FE implementation. 

Today, however, flexible strain-rate potentials  have been proposed that exhibit excellent 

predictive abilities for general application [24]. Thus, the availability of strain-rate potentials in 

finite element codes would bring a real added value to the sheet metal forming community, both 

in research work and industrial applications. 

 

The aim of this paper is to propose a generic implicit time integration algorithm for anisotropic 

elastoplastic, time-independent constitutive models using the strain-rate potential approach. 

Compared to the state-of-the-art integration schemes developed for yield criteria, the proposed 

algorithm is expected to exhibit the same generality, robustness, accuracy, and time-efficiency. 

Existing rigid-plastic FE implementations prevent the use of strain-rate potentials for sheet 

forming simulations including unloading and springback. 

 

The structure of the paper is as follows. The strain-rate potential-based elastoplastic modelling 

framework is briefly presented in Section 2. Section 3 is devoted to the development of the 

implicit time integration algorithm, which is presented in detail and kept as general and 

complete as possible. In Section 4, the quadratic Hill potential, as well as the recent, non-

quadratic potential Srp2004-18p are taken as particular cases of strain-rate potentials, together 

with a non-linear isotropic-kinematic hardening model. The resulting algorithm is implemented 

into the software Abaqus/Standard. Validation and comparison with pseudo-conjugate yield 

criteria are performed through numerical simulations of typical sheet metal forming processes. 

 

 

2 CONSTITUTIVE MODEL 

The phenomenological elastoplastic modelling adopted here is rate independent (without viscous 

effects) and restricted to cold deformation. Classical rate-independent models utilize a hypo-

elastic law defining the stress rate with respect to the elastic strain rate, a yield function 

delimiting the elastic zone, a plastic flow rule, and a set of internal state variable evolution laws 

defining the work hardening during plastic deformation. In the current setting, the yield function 

is replaced by a plastic strain-rate potential and the flow rule is modified accordingly. The frame 

objectivity issue, which arises when large deformations are intended, is solved by writing the 

constitutive equations in an appropriate rotating orthogonal frame. 

 

Vector and tensor variables are denoted by bold-face symbols. Components, whenever used, are 

referred to a Cartesian orthogonal frame. The summation convention over repeated indices of 
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such components is used throughout the paper. Let A, B denote second-order tensors and C a 

fourth-order tensor. The double-contracted tensor products between such tensors are defined as:  

 

 : ,    ( : ) ,    : :
ij ij ij ijkl kl ij ijkl kl

A B C A A C A= = =A B C A A C B  (1) 

 

The norm of A is defined as :=A A A , and its direction, if A is non-zero, as A A . The 

norm of C is defined by 
ijkl ijkl

C C=C . Finally, ( ) ij klijkl
A B⊗ =A B . Note that all second- and 

fourth-order tensors that enter the modelling described hereafter are supposed fully symmetric. 

 

2.1 Rotation-compensated tensor quantities and equations 

 

The sheet undergoes generally large deformations in metal forming and its elastoplastic 

behaviour is described by rate constitutive equations. In order to achieve material objectivity, 

objective rates must be used. A very convenient approach used to ensure material objectivity, 

while keeping the constitutive equation simple in form, consists of reformulating these equations 

in terms of rotation-compensated variables. More precisely, if A and C designate second- and 

fourth-order tensors, respectively, the corresponding rotation-compensated tensors (labelled by a 

superposed hat) re defined by 

 

 ˆ ˆ,       ,ij ki lj kl ijkl pi qj rk sl pqrsA A C C= ℜ ℜ = ℜ ℜ ℜ ℜ  (2) 

 

where ℜ  is an orthogonal rotation matrix, generated by a skew-symmetric spin tensor Ω  using 
T⋅ = Ωɺℜ ℜ , where the superposed dot on ℜ denotes time differentiation and the superscript T 

indicates the transpose of ℜ . 

 

The main interest of this approach is that objective derivatives (labelled here by a superposed 

circle) are simply related to the material time derivatives of their rotation-compensated 

counterparts via equations similar to Eq. (2), i.e., 

 

 ˆ ˆ,       kl pqrsij ki lj ijkl pi qj rk slA A C C= ℜ ℜ = ℜ ℜ ℜ ℜ
ɺ ɺ

 (3) 

 

Clearly, ℜ  should satisfy, in turn, the objectivity condition under superimposed rigid-body 

motions. For example, the Jaumann derivative is obtained by setting =Ω W , while using 

= Rℜ  leads to the Green-Naghdi derivative. Here W denotes the total spin, while R is the 

orthogonal tensor in the polar decomposition of the deformation gradient. It should be noted 

that, following Mandel’s pioneering work on the average plastic spin of polycrystals [25], other 

phenomenological models have been proposed to describe the evolution of the plastic spin (see, 

e.g., [26-28]), and their computer implementation has also been studied [29, 30].  

 

In the following, we assume throughout that all tensor variables turn with the spin W (i.e., 

Jaumann rates are considered), and that they are rotation-compensated. Consequently, simple 
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time derivatives are involved in the constitutive equations, making them identical in form to a 

small-strain formulation. For simplicity, the superposed hat (^) is omitted thereafter. 

 

 

2.2 Modelling framework 

 

The total strain rate tensor D  is decomposed into an elastic part eD  and a plastic part pD : 

 

 e p= +D D D  (4) 

 

and, therefore, the linear, hypoelastic response of the material is described by 

 

 ( ): ,e p= −σ C D Dɺ  (5) 

 

where σɺ  is the rate of the Cauchy stress tensor σ  and e
C  is the fourth-order elasticity tensor. In 

the case of isotropic linear elasticity, 2 ,e s

4
G K′= + ⊗C I I I  with K and G being the bulk and 

shear moduli, respectively. Finally, I  is the unit second-order tensor, whose components are the 

Kronecker’s deltas, i.e. Ikl = δkl, while s

4
′I  is the fourth-order symmetric deviatoric unit tensor, 

whose components are 4I (1 2)(δ δ δ δ ) - (1 3)δ δ .s

ijkl ik jl il jk ij kl
′ = +  

 

In associated rate-independent incompressible plasticity, the plastic strain rate tensor pD  is 

supposed proportional to the gradient of a yield function Φ , defined as 

 

 ( ) ( ),τ, τ 0.Φ = − − =σ X σ Xσ  (6) 

 

Here, the scalar variable τ  is a measure of the “size” of the elastic domain (and describes the 

isotropic hardening), X  locates the “centre” of this elastic domain in the stress space (and 

introduces the kinematic hardening), and σ  is the equivalent stress defining its shape. The flow 

rule reads 

 

 
( ), τ,

,P ∂Φ
=

∂

σ X
D

σ
ɺλ  (7) 

 

where λɺ  is the plastic multiplier, which is supposed strictly positive for plastic loading, and 

equal to zero for neutral plastic loading, for unloading, and in elastic state.   

 

In the current work, the dual potential Ψ  of the yield function Φ  is used instead: 

 

 p( ) .Ψ =D ɺλ  (8) 

 

The flow rule becomes 
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Ψ

τ ,
p

∂
=

∂
T

D
 (9) 

 

where ′= −T σ X  is the effective stress tensor and ′σ  denotes the deviator of the stress tensor σ. 

In this work, we restrict ourselves to functions Ψ  and Φ that are first-order homogeneous with 

respect to positive scalar multipliers.  Although the existence of dual potentials is theoretically 

demonstrated, the analytical expression of a strain-rate potential is seldom calculated as the dual 

of a given yield function. 

 

The two hardening variables τ  and X  evolve with the plastic strain. Their evolution equations 

are sought in the generic form 

 

 , τ .
x τ

h= =X h ɺ ɺɺ ɺλ λ  (10) 

 

Note again that objective rates must be used in Eq. (5) and (10), should the model be written in a 

fixed frame rather than the particular rotating frame adopted here. 

 

By using the consistency condition for plastic loading, the following linear tangent relation can 

be derived between the stress rate and the strain rate tensors 

 

 : ,ana=σ C Dɺ  (11) 

 

where the analytical tangent modulus ana
C  takes the form [31] 

  

 
( ) ( )

( )

: :
,

: : : ( ) ( )

e e

ana e

e

X
h

⊗
= −

+ + Ψ Ψ

C N N C
C C

N C N N h N Nτ

α  (12) 

 

with 1α =  for plastic loading and 0=α  otherwise; / || ||p p=N D D  denotes the plastic strain 

rate direction. When the elasticity is linear and isotropic, this relation reduces further to 

 

 
( )

2

4

4
2 .

2 : ( ) ( )

ana s

X

G
K G

G h

⊗
′= ⊗ + −

+ + Ψ Ψ

N N
C I I I

N h N Nτ

α  (13) 

 

 

3 TIME INTEGRATION ALGORITHM 

The elastoplastic model introduced in Section 2 has been implemented in the static implicit code 

ABAQUS/Standard. At each equilibrium iteration, a displacement increment is predicted in each 

node of the mesh. From this, the kinematic equations are employed to calculate the strain 

increment at each integration point of the finite elements. These steps are carried out by the FE 

code, so only the update of the state variables needs to be performed in order to verify the 
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equilibrium at the end of the loading increment. In this section, we develop the state update 

methodology and derive the consistent tangent modulus necessary to iteratively reach the 

equilibrium at the end of each loading increment. 

 

The total and plastic strain increments ∆ε  and p∆ε  are defined as 

 

 
1 1

 dt,       dt
n n

n n

t t

p p

t t

+ +

∆ = ∆ =∫ ∫D Dε ε  (14) 

 

and must be further approximated since the values of D  and pD  are only available at the two 

ends of the time increment 1n n
t t t+∆ = − . Several approximations for the strain increment have 

been proposed in the literature and they are already implemented in the finite element codes, as 

the strain increment is an input variable for the constitutive algorithm. For the plastic strain 

increment, the backward Euler time integration scheme assumes that pD  is constant over the 

increment and equal to its value at 1,n
t +  i.e. 

 

 1 .p p

n
t+∆ ≈ ∆ε D  (15) 

 

As a consequence, due to the first-order homogeneity of the plastic potential with respect to 

scalar multipliers, one can write the incremental form of Eq. (8) in any of the following 

equivalent forms: 

 

 ( ) ( ) ( ) ( )1∆ Ψ(∆ ) ∆t Ψ( ) ∆t Ψ ∆ Ψ ,p p p p

n 1 n 1 n n 1+ + + += = = =ε D D N ε Nλ  (16) 

 

where the direction of the plastic strain rate at the end of the increment can be written as 

 

 1
1

1 ∆

p p

n
n p p

n

+
+

+

∆
= =

D ε
N

D ε
 (17) 

 

The derivatives of the plastic potential can also take different equivalent forms, which can prove 

to be useful in particular contexts: 

 

 
( ) ( )

( )
( )1 1

1 1

Ψ Ψ ∆ Ψ
.

∆

p p

n n

p p

n n

+ +

+ +

∂ ∂ ∂
= = =

∂ ∂∂

D ε N
ξ

D Nε
 (18) 

 

Equations (16) and (18) show that the effects of the norm ∆ pε  and the direction 1n+N  of the 

plastic strain increment can be separated. This observation may be used at the algorithmic level 

to locally reduce the number of unknowns. 

 

3.1 Discrete equations of the constitutive model 
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In the previous section, Eqs. (5) and (8)-(10) were shown to completely define the constitutive 

model. The FE implementation of such a model requires the numerical integration of these 

equations over a time increment, from a known state at time tn to the unknown state at tn+1, given 

the total strain increment ∆ε . The most widely used method is the fully implicit, backward 

Euler integration scheme (see, e.g., [32-34]), which is also employed in this work.  

 

The incremental form of the hypoelastic Hooke’s law is written as 

 

 ( )1 :e p

n n+ = + ∆ − ∆σ σ C ε ε . (19) 

 

The implicit time integration schemes of rate-independent plasticity models include an elastic 

trial :try e

n
= + ∆σ σ C ε  followed, when necessary, by a plastic correction. This two-step 

procedure is illustrated in Figure 1, together with some of the notation used in this section. The 

decision about whether the trial stress corresponds to an elastic state or an elastoplastic one 

requires a particular attention here since, in the framework of strain-rate potentials, no explicit 

yield criterion is available. This issue will be clarified in Section 3.2. 

 

 

 

n′σ

1n+′σ

try′σ

initial yield locus

updated yield locus

 
 

Figure 1. Elastic prediction and plastic correction during a typical elastoplastic increment; 

graphical illustration in the deviatoric stress space. 
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The elastic trial stress tryσ  can be computed explicitly since the total strain increment is known 

at the beginning of the time step, together with the spherical (hydrostatic) part of the final stress 

 

 ( ) ( ) ( ) ( ) ( )1 11 3 1 3sph

n n ntr tr K tr+ += = + ∆σ σ I σ I ε I  (20) 

 

since it also depends only on known quantities. However, the deviatoric part of the final stress 

depends on the yet unknown increment of plastic strain, since 

 

 ( ):e p

n 1 n+
′ ′ ′= + ∆ − ∆Cσ σ ε ε . (21) 

An alternative way of computing the deviatoric stress at the end of the increment is provided by 

the incremental form of Eq. (9): 

 1 1 1

Ψ
τ .

( )
n n n p+ + +

∂
′ = +

∂ ∆
σ X

ε
 (22) 

Combining Eqs. (21) and (22) yields the following nonlinear system of algebraic equations: 

 ( )Ψ
τ :

( )

e p

n 1 n 1 np+ +

∂
′ ′+ − ∆ − ∆ − =

∂ ∆
X C 0ε ε σ

ε
. (23) 

Consequently, the time integration problem of the constitutive model is reduced to solving this 

system
1
, the principal unknown being p∆ε . Then, the updated stress is computed as 

 1

sph

n 1 n 1 n+ + +
′= +σ σ σ . (24) 

For the Newton-Raphson solution of Eq. (23), one defines the residual function ( )p∆ρ ε  as 

 ( ) ( )Ψ( )
τ :

( )

p
p e p

n 1 n 1 np+ +

∂ ∆
′ ′∆ = + − ∆ − ∆ − =

∂ ∆
X C 0

ε
ρ ε ε ε σ

ε
. (25) 

An initial value (0)∆
pε  for the plastic strain increment is calculated and then corrected at each 

iteration “k” with the correction term 

 
( )

( )
1

( )

( 1) ( )∆ :

p

kp p

k kp
δ

−

+

 ∂ ∆
 = − ∆

∂∆  

ρ ε
ε ρ ε

ε
 (26) 

The Jacobian ( )p∂ ∂ ∆ρ ε  is calculated by differentiation of Eq. (25): 

 
2

s

42

( ) Ψ( ) τ Ψ( )
τ :

( ) ( ) ( ) ( ) ( )

p p p
e

p p p p p

∂ ∆ ∂ ∂ ∆ ∂ ∂ ∆
′= + ⊗ + +

∂ ∆ ∂ ∆ ∂ ∆ ∂ ∆ ∂ ∆

ρ ε X ε ε
C I

ε ε ε ε ε
 . (27) 

                                                 
1
 It is implicitly assumed here that each of the state variables τ

n 1+
 and 

n 1+
X  can be explicitly written in terms of 

p
∆ε . This assumption is easily verified for the combined isotropic-kinematic model used in section 4.1; it has also 

been shown [19, 35] to be true for the much more complex model of Teodosiu and Hu [36]. 
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The solution of Eq. (25) requires the calculation of the plastic potential and of its first- and 

second-order derivatives: 

 
2

2

Ψ( ) Ψ( )
=Ψ( ), , ,

( ) ( )

p p
p

p p

∂ ∆ ∂ ∆
∆ ∆ = =

∂ ∆ ∂ ∆

ε ε
ε ξ ζ

ε ε
λ  (28) 

as well as the values of the internal variables 1τ
n+  and 1n+X  and of their first-order derivatives 

τ ( )p∂ ∂ ∆ε  and ( )p∂ ∂ ∆X ε . These terms are the only ones specific to the particular forms of the 

anisotropy and hardening models; some examples are given in Section 4. The rest of the 

procedure is general and can be used with any other model. 

 

3.2 Yield condition 

 

In classical rate-independent plasticity, the elastic trial stress is used to evaluate the yield 

function. If the yield condition is not verified (nor violated), then the increment is elastic and 

1

try

n+ =σ σ ; otherwise, the plastic correction should be applied. In the present case, no explicit 

yield condition is available. To overcome this difficulty, Bacroix and Gilormini [14, 37] have 

developed a strain-rate-potential-based yield condition, using the following function of the 

plastic strain rate direction: 

 

 ( ) ( )τΨ :g = −N N T N . (29) 

Based on the maximum work principle, the authors have shown that for a given stress state, a 

yield condition can be written as:  

 

 ( )
0 if lays outside the yield surface,

Min τΨ : 0 if lays on the yield surface,       

0 if lays inside the yield surface.  

<


− =   
 >

N

σ

N T N σ

σ

 (30) 

 

Four independent angles 1θ , 2θ , 3θ , and 4θ  are used to define the components of the unit-length 

tensor N, their collection being denoted by θ . This compact notation is described in more detail 

in the Appendix. The minimization of g with respect to θ  is associated to the solution of the 

following equation: 

 

 
( )g∂

=
∂

θ
0

θ
, (31) 

 

where 

 

 
( ) ( )Ψ

τ :
g

τ

∂ ∂  ∂
= − 

∂ ∂ ∂ 

θ N T N

θ N θ
. (32) 
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The BFGS minimization algorithm is used in order to avoid analytical calculation of the Hessian 

( )2 2
g∂ ∂θ θ , which is instead approximated numerically. The BFGS algorithm has also the 

advantage of providing a better convergence whenever the initial guess is far from the solution 

or the function g is not proven to be convex. 

 

In Eq. (32), the term ( )Ψ∂ ∂N N depends on the chosen potential, while ∂ ∂N θ  depends only 

on the definition (56) and is computed once for all as 

 

 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 3 4 2 3 4 2 3 4

3 43 4

4

0

0 0

0 0 0

s s s s c c s s c s c s c s s c

c s s s s c s s s s c s s s s c

s s s c c s c s c

c cs s

s

 −
 
 

∂  −=
 ∂

− 
 

− 

N

θ
, (33) 

 

where cos and sin ; 1,4
i i i i

c s iθ θ= = = . 

 

As compared to the classical elastoplastic models, the verification of the yield condition seems 

more expensive here, since a minimization problem has to be solved. In practice, this extra cost 

can be avoided in most cases. As underlined by Hoferlin [38], the trial stress is surely elastic and 

no check needs to be made whenever the deviatoric effective trial stress try

n
′ −σ X  is much 

smaller than τ
n
, e.g., 

 

 τ 0.1try′ − ≤σ X  (34) 

 

When the initial stress 
n
σ  lies on the yield surface, the following simple condition guarantees 

that the trial stress lies outside the yield surface [32], and hence that the increment is 

elastoplastic: 

 

 ( ) : 0try

n n
′ ′− ≥σ σ N , (35) 

 

where 
n

N  is the normal to the initial yield surface, which can be stored at each increment for 

future use. The use of Eq. (35) renders the minimization unnecessary in most situations. Finally, 

in the remaining cases, when the minimization must be performed, it can be stopped as soon as a 

tensor N is found so that g(N)<0. Indeed, the minimum is guaranteed to be negative in this case, 

so the increment is elastoplastic. Note that the plastic strain rate direction N that minimizes 

( )g N  in Eq. (30) has no relevance with respect to the solution of Eq. (25). Consequently, there 

is no need to calculate its exact value. In practice, several simple initializations for N already 

fulfil this condition in most cases. Thus, the minimization procedure seldom needs more than 
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one iteration, which is equivalent to the classical yield condition in terms of computational cost. 

These conjectures will be further substantiated in Section 4. 

 

3.3 Consistent tangent modulus 

 

The user material routine in a finite element code must update the stress (and other state 

variables) over a strain increment, and it must also provide the modulus defining the tangent 

relation between the stress increment and the strain increment. This so-called algorithmic (or 

consistent) tangent modulus alg
C  is required for the finite element equilibrium iterations. In the 

framework of strain-rate potentials, algorithmic tangent moduli have been derived by Bird and 

Martin [39] in the case of elastic-perfectly plastic materials, by Szabó and Jonas [15] for 

isotropic hardening, and by Hoferlin [38] for combined nonlinear isotropic-kinematic hardening 

models. The last modulus can be applied for the present model; its expression reads 

 

 ( ) ( )
1

1 1

1 : : ( )e s p

n 4
D D

−− −

+
 ′= + ∆  

σ C I C ε , (36) 

 

with 1τ
p

X n
hτ += + ⊗ +C h ξ ξ ξ ζ  being the tangent operator linearly relating the deviatoric stress 

increment to the plastic strain increment, 1 : ( )p p

n
D D+

′ = ∆σ C ε . 

 

Calculation of the algorithmic modulus with Eq. (36) involves two matrix inversions. This 

numerical inconveniency can be avoided if the tangent modulus is derived in a slightly different 

manner, starting from Eq. (25). By differentiation of Eq. (25) and convenient rearrangement of 

terms, one obtains: 

 

 s1 1
1 4

τ
τ : : ( ) : ( )

( ) ( )

e p en n
np p

D D+ +
+

 ∂ ∂
′ ′+ ⊗ + + ∆ = ∆ ∂ ∆ ∂ ∆ 

X
ξ ζ C I ε C ε

ε ε

K

. (37) 

 

Therefore, the following relationship can be written: 

 

 1 : :p e
D D

− ′∆ = ∆ε C εK  (38) 

 

where K is a matrix related to p
C , yet different. The major advantage of this formula is that 

( ) ( )p p≡ ∂ ∆ ∂ ∆ρ ε εK , as one can easily see from Eq. (27). Consequently, K  and its inverse 

have already been computed during the calculation for p∆ε . 

 

Finally, the incremental form of Hooke’s law is differentiated in its split form (20)-(21) and then 

combined using Eq. (38) to obtain: 

 

 1

1 :     with          : :alg alg e e e

n
D D

−

+ = ∆ = −σ C ε C C C CK . (39) 
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An interesting characteristic of this new formulation, in addition to its simplicity, is that no extra 

matrix inversions are needed, except for the Jacobian of Eq. (25), which is already available in 

triangular form. Note that in the case of isotropic linear elasticity, the algorithmic tangent 

modulus further simplifies as 

 

 2 1

42 4alg s
K G G

−′= ⊗ + −C I I I K . (40) 

 

 

3.4 Sub-stepping procedure 

 

In order to ensure a quadratic convergence of the Newton-Raphson resolution of Eq. (25), a 

consistent tangent modulus has been derived from the discrete equations. However, the solution 

of the nonlinear Eq. (25) can fail to converge for large strain increments, especially when the 

plastic potential exhibits strong variations of curvature. For example, this appeared to be the 

case for the Yld2004-18p yield criterion [40], when small values of the exponent b are 

considered, as shown by Yoon et al. [41]. The strain-rate potential Srp2004-18p, proposed by 

Barlat and Chung [42] and Kim et al. [9], has also shown such difficulties when the validations 

that will be shown in Section 4 were performed. Similar numerical difficulties have been 

reported in the literature, when using highly flexible anisotropic yield criteria. A sub-stepping 

procedure has been adopted to solve this problem, inspired from previous yield-surface based 

works performed in the classical plasticity framework [43-47]. When the initial solution (0)

p∆ε  

induces a too large value of the residual, which prevents convergence, this value is used to 

generate a user-defined number m of constant vectors, with the following rule: 

 

 ( )(0)
,   1,p

i

m i
i m

m

−
= ∆ =ρ ρ ε . (41) 

 

Then, the following series of equations are solved sequentially, using the solution 
( )
p
i

∆ε  of 

equation “i” as an initial guess for equation “i+1”: 

 

 ( )( ) 0,   1,p
ii

i m∆ − = =ρ ε ρ . (42) 

 

At the end of this procedure, the solution of the initial equation is obtained, since according to 

Eq. (41), m =ρ 0 . Note that this sub-stepping procedure is activated only at the time steps and 

integration points where the direct solution of Eq. (25) fails. Consequently, the impact on the 

overall computation time is reduced. The user-defined number of sub-steps m can be increased 

automatically by the code in case of divergence. 

 

The initialization of the plastic strain rate increment has an important impact on the 

convergence. In particular, the initial value for the plastic strain increment cannot be zero, since 

it enters the very definition of the plastic potential. The most satisfactory initialization was 



 14 

found to be (0) (0) (0)

p λ∆ = ∆ε N , where N(0) is the direction normal to a von Mises yield surface 

passing through the elastic trial stress. 

 

Note that, just for avoiding similar cases where the nonlinearity of the plastic potential would 

prevent the convergence of the minimization problem (31), a similar sub-stepping algorithm has 

been implemented that allows for a robust solution of both equations. 

 

3.5 Overall time integration algorithm 

 

The numerical implementation has been performed in Abaqus/Standard via a UMAT routine. 

For clarity, the numerical algorithm is summarized hereafter. It has been used in the next section 

for several validations and applications, in order to address its robustness and usefulness. 

 

1. Input data: , , ,n n nτ ∆σ X ε   (strain increment, initial stress and internal variables) 

2. Compute σ , ε , ,sph sph

n n
′ ′∆ ∆σ ε   (spherical and deviatoric parts) 

3. Elastic prediction: :try e

n
′ ′ ′= + ∆σ σ C ε  

4. Plastic yield condition: ( ) ( ){ }sgn min τ Ψ : ?try

n n
 ′− − N

N σ X N  

5. If elastic increment: 

1

1 1

( )

,

try sph

n n

n n n n

alg e

Ktr

τ τ
+

+ +

′= + + ∆

= =

=

σ σ σ ε I

X X

C C

 

6. Otherwise (elastoplastic increment): 

Initialize p∆ε  

Repeat: 

Calculate ,  ( ),  ( )p pλ∆ ∆ ∆ξ ε ζ ε   (specific to chosen potential)  

Calculate 1
1 1

τ
,  ,  ,  

( ) ( )

n n 1
n n p p

τ
+ +

+ +

∂ ∂

∂ ∆ ∂ ∆

X
X

ε ε
  (specific to hardening model) 

Calculate ( )p∆ρ ε , 
( )

( )

p

p

∂ ∆

∂ ∆

ρ ε

ε
; update p∆ε   (BFGS algorithm) 

Until convergence 

Update stress and state variables; calculate the consistent tangent modulus alg
C  

7. Return 1n+σ , state variables, and alg
C  to check equilibrium. 

 

 

4 ALGORITHM VALIDATION AND APPLICATIONS 

The constitutive algorithm developed in Section 3 has been implemented in the finite element 

code Abaqus/Standard and applied to typical sheet metal forming problems. One aim of this 
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section is to validate the state update algorithm with respect to equivalent models available in 

Abaqus. Secondly, an advanced anisotropic strain-rate potential is implemented in the same 

framework and its predictions are compared to a yield function similar in form and shown to 

behave as its quasi-dual [9].  

 

4.1 Plastic potentials and hardening model 

The constitutive model presented in Section 2 must be completed by the mathematical 

expressions of the plastic potential ( )pΨ D  and of the internal variables τ  and X . Two 

examples of plastic potentials are considered hereafter. One is the quadratic strain-rate potential 

dual to the classical Hill yield criterion, mainly used for validation purposes. Next, the 

anisotropic strain-rate potential Srp2004-18p [9, 42] has been implemented. As for the 

hardening, a non-linear isotropic-kinematic model is implemented, which is also available in 

Abaqus. Indeed, hardening is not an issue in this work – validation is the main issue here –, and 

more complex hardening models can be adopted within the present framework.  

 

 

Quadratic plastic potential 
 

The yield criterion proposed in 1948 by Hill [48] is a quadratic expression with six material 

parameters (F, G, H, L, M, and N). In the material orthotropic frame, this criterion can be written 

as: 

 

 ( ) ( ) ( ) ( )
1

2 2 2 2 2 2 2

22 33 33 11 11 22 23 31 12, , 2 2 2F T T G T T H T T LT MT NT Φ = − + − + − + + + −
 

σ X τ τ  (43) 

 

where the three axes 1, 2, and 3 are the rolling, transverse and normal direction, respectively, in 

the case of a rolled, orthotropic metal sheet, and Tij are the components of the effective stress 

tensor. Its dual strain-rate potential can be rigorously derived [14] and takes the form: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

22 2 2 2 2 2

11 22 33 23 31 12

4 4 4 2 2 2

∆ ∆ ∆

p p p p p p pF G H
D D D D D D

L M N

 
Ψ = + + + + +  

D  (44) 

 

where FH FG HG∆ = + + . For an isotropic material, 1 2F G H= = =  and 3 2L M N= = = . 

 

 

Srp2004-18p plastic potential 
 

An extension of the Srp93 strain-rate potential [6] has been recently proposed by Barlat and 

Chung [42] and Kim et al. [9]. This potential, named Srp2004-18p, has consistently proven to 

have superior flexibility and ability to describe the anisotropy of sheet metal for a large range of 

materials [24, 49]. Its mathematical expression involves 18 material parameters and makes use 

of two linear transformations of the plastic strain-rate tensor D
p
: 
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 ( ) ( )
1

1 2 3 2 3 3 1 1 22

1

2 2

bb b b b b b
p

b
E E E E E E E E E

−

 
′ ′ ′ ′′ ′′ ′′ ′′ ′′ ′′Ψ = + + + + + + + + + 

D ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ , (45) 

 

where 
i

E ′ɶ and ,  1,3
i

E i′′ =ɶ  are the principal values of p′Dɶ  and p′′Dɶ , defined respectively by the 

two linear transformations hereafter: 

 

 4

p s p′ ′ ′= ⋅ ⋅D A I Dɶ , (46) 

 4

p s p′′ ′′ ′= ⋅ ⋅D A I Dɶ . (47) 

 

The fourth order arrays ′A  and ′′A  contain anisotropy coefficients. For the case of orthotropic 

symmetry, they can be represented as the following 6×6 arrays: 

 

 

1 2 10 11

3 4 12 13

5 6 14 15

7 16

8 17

9 18

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
and   

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a a a a

a a a a

a a a a

a a

a a

a a

− − − −   
   − − − −   
   − − − −

′ ′′= =   
   
   
   
      

A A  (48) 

 

In order to use these compact notations, the pD -like tensors are written as 6-component vectors; 

i.e., 11 22 33 23 31 12[ ]p p p p p p p T
D D D D D D=D , with components in the frame of material 

symmetry.  

 

The isotropic case is obtained for 1 2 18... 1a a a= = = =  and b = 4/3 or 3/2 for bcc or fcc materials, 

respectively. The Srp93 potential can be recovered by enforcing 

 

 4 4

s s′ ′ ′′ ′⋅ = ⋅ =A I A I A . (49) 

 

Recently, an extension of Srp93 and Srp2004-18p has been proposed by Rabahallah et al. [50], 

involving an arbitrary number of linear transformations.  

 

The first-order derivatives of the expression (45) are provided in [9]. The implicit time 

integration procedure also requires the calculation of the second order derivatives. 

 

 

Hardening model 
 

Modelling of hardening has been a very active research field in the last decades, especially for 

sheet metal forming applications, due to an increased interest in the accurate description of 

strain-path changes in finite element simulations (e.g., strain reversal, orthogonal loading etc.; 
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an overview can be found in Haddadi et al. [51]). Several advanced hardening models have been 

proposed in the last two decades [36, 52-55]. In order to be implemented directly in the present 

algorithm, the hardening model must take the form (10). This may seem a restrictive condition; 

however, it has been demonstrated that even hardening models as complex as the Teodosiu-Hu 

model [36, 51, 56, 57] can be cast in such a simple form, without any alteration [19, 38, 58, 59].  

 

For the sake of comparison, the non-linear isotropic-kinematic hardening model implemented in 

the current algorithm is the one already available in Abaqus/Standard [60]. This model involves 

two internal variables (R, X). The scalar variable R describes the isotropic hardening, and the 

second-order tensor X describes the kinematic hardening. With the notation of Section 2, the 

differential equations and the initial conditions describing the evolution of the hardening 

variables are: 

 

 0τ τ R= + , (50) 

 ( )R sat , (0) 0R C R R Rλ= − =ɺɺ , (51) 

 ( ) ( )x sat , 0C X λ= − =X ξ X X 0ɺɺ , (52) 

 

where 0 R sat x satτ , , ,  and C R C X  are material parameters. 

 

The backward Euler scheme is used for the time integration of these rate equations, leading to 

the update equations: 

 

 

1 0

1
1

τ τ ,
1

.
1

n R sat
n

R

n x sat n
n

x

R C R

C

C X

C

λ

λ

λ

λ

+

+
+

+ ∆
= +

+ ∆

+ ∆
=

+ ∆

X ξ
X

 (53) 

 

The following derivatives are also required for the calculation of the algorithmic tangent 

modulus: 

 

 

( )
( )

( )

( )

2

1

2

1

2

( ) 1

( ) 1

x sat x x sat x nn

p

x

R sat n Rn

p

R

C X C C X C

C

C R R Cτ

C

λ λ

λ

λ

+

+

∆ + ∆ + ⊗ − ⊗∂
=

∂ ∆ + ∆

−∂
=

∂ ∆ + ∆

ζ ξ ξ X ξX

ε

ξ

ε

 (54) 

 

These particular expressions of the plastic potential and hardening laws, as well as their 

derivatives, simply feed into the general algorithm without any other modification. Any other 

model that fits the requirements of Section 2 can be implemented with this algorithm in the same 

way. 
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4.2 Algorithm validation: bulge test and S-shape rail forming 

 

These applications are meant to validate the numerical implementation of the constitutive 

algorithm with respect to reference results, and to address its computational efficiency with 

respect to the more classical yield-function-based algorithms. To do so, two typical sheet metal 

forming tests have been selected: a bulge test and an S-shape rail forming. The main difference 

between the two is the highly nonlinear contact evolution for the S-rail, which may cause 

convergence problems that further interact with the overall equilibrium convergence sequence. 

In both cases, Hill’s quadratic potential is used. Since the quadratic Hill yield criterion 

implemented in Abaqus/Standard is the exact dual of the quadratic potential used here, an 

identical response should be expected.  

 

The material parameters, corresponding to an 1-mm thick AA5182 aluminium sheet, are given 

in Table 1 (from Haddadi et al. [51]). The incompatible-modes enriched, hybrid displacement-

pressure element C3D8IH is used throughout this section.  

 

 

 

Table 1. Material parameters used for the numerical simulations. 

 

Elasticity Hill’48 anisotropy Hardening 

E 

[MPa] 
ν 

 

F 

 

G 

 

H 

 

L 

 

M 

 

N 

 
τ0 

[MPa] 

CR 

 

Rsat 

[MPa] 

CX 

 

Xsat 

[MPa] 

70000 0.33 0.65 0.57 0.43 1.5 1.5 1.61 148.5 9.7 192.4 152.7 26 

 

 

 

 

The results for the bulge test simulations and the S-rail simulations are shown in Figures 2 and 

3, respectively. The two figures clearly show that the results obtained with the Abaqus built-in 

model and algorithm, and with the current implementation via UMAT, do coincide with each 

other. This perfect correspondence has been also noticed in terms of individual components of 

stress, strain, and internal variables. Thus the numerical implementation of the constitutive 

algorithm seems accurate and error-free, at least in such typical applications. 

 

Table 2 summarizes the computing time required by two simulations, using the Abaqus built-in 

Hill quadratic criterion, as well as its dual potential via UMAT. The calculations have been run 

on a PC computer with a Pentium 1.8 GHz dual core processor. The two dual quadratic 

potentials (and the corresponding computer implementations) give not only identical 

predictions, but the computing time is almost the same (less than 5% larger in the strain-rate 

potential case). 
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Figure 2. Finite element simulation results for the bulge test. Left: using the Abaqus/Standard 

built-in model and algorithm; Right: using the current model and algorithm implemented in 

Abaqus/Standard via UMAT. Isovalues of equivalent stress. 

 

 

 
 

Figure 3. Finite element simulation results for the S-rail. Left: using the Abaqus/Standard built-

in model and algorithm; Right: using the current model and algorithm implemented in 

Abaqus/Standard via UMAT. Isovalues of equivalent stress. 

 

 

 

Table 2. CPU time and number of increments for the numerical simulations of bulge test and S-

shape rail.  

 

Forming problem Code CPU time 
Number of 

increments 

Bulge test 
Abaqus 32 min 73 

UMAT 33 min 73 

S-shape rail 
Abaqus 211 min 240 

UMAT 219 min 240 
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4.3 Cup drawing simulation with Srp2004-18p 

 

The aim of this application is twofold. First, the currently developed algorithm is applied to one 

of the most complex strain-rate potentials available in the literature, in order to address its 

robustness. Second, its finite element predictions are compared to those of its “pseudo-

conjugate” yield function, Yld2004-18p, for a first investigation of their relative equivalence. 

The Yld2004-18p criterion has been used for the cup drawing simulation of an AA2090 

aluminium alloy by Yoon et al. [41]. Kim et al. [23] have recently used plane-stress versions of 

both Yld2004-18p and Srp2004-18p for this application. The parameters of several strain-rate 

potentials, including Srp2004-18p, have been identified for the same material by Rabahallah et 

al. [24]. Therefore, the same cup drawing simulation was performed with the algorithms 

developed in this paper, using the anisotropy coefficients of the AA2090 material. The 

hardening parameters are those used in [41]. Table 3 summarizes the material parameters used 

in the simulation. The geometry of the test is given in Figure 4. The sheet thickness was 1.6 mm, 

and the blank holder force was 5500 N. The Coulomb friction coefficient between the sheet and 

the tools was 0.1. One layer of linear hybrid (displacement-pressure) C3D8IH solid elements has 

been used to mesh one quarter of the sheet metal, as parametric numerical studies have shown 

that the number of solid element layers does not influence the earring profile [59, 61].  

 

 

 

 

Table 3. Material parameters used for the cup drawing simulation.  

 

(a) Elasticity and hardening parameters 

Elasticity Hardening 

E 

[MPa] 
ν 

 
τ0 

[MPa] 

CR 

 

Rsat 

[MPa] 

CX 

 

Xsat 

[MPa] 

70000 0.3 279.6 1.7 488 0 0 

(b) Anisotropy parameters 

a1 a2 a3 a4 a5 a6 a7 a8 a9 
0.39 0.68 0.91 1.01 1.13 0.63 1.00 0.56 1.07 

a10 a11 a12 a13 a14 a15 a16 a17 a18 

1.37 0.77 1.45 0.68 0.94 1.11 1.00 0.56 0.51 

b=1.3333 
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Figure 4. Test geometry for the cup drawing simulation. Dimensions are in mm. 

 

 

 

 

Figure 5 shows the results in terms of cup height profiles. The results obtained with the current 

implementation are compared to those available in [41] and [23]. One may notice that, although 

the four predictions are slightly different, they present similar characteristics: six ears are 

predicted, at the same location, and the errors with respect to the experiments are of the same 

order and similarly distributed. It is noteworthy that very few other stress or strain-rate 

potentials allow for the prediction of six ears in cup drawing. Thus, this simulation underlines 

the mathematical flexibility of the Srp2008-18p potential and its ability to describe complex 

anisotropic behaviour within a phenomenological framework. Both Srp2004-18p predictions 

underestimate the ears at 0° and 180°, as compared to Yld2004-18p. Also, the differences 

between three-dimensional and plane stress formulations are as large as those between the stress 

and strain-rate potentials, respectively. A more detailed interpretation of the differences existing 

between the four predictions is difficult for several reasons. The parameter identification method 

used for our model is different from the three other. Also, two different finite element codes 

have been used (namely, MSC.Marc for the 3D Yld2004-18p model and Abaqus for the other 

models), with different elements. Thus, the comparison in Figure 5 cannot be refined any 

further, unless all the simulations are performed with the same finite element code, mesh, and 

parameters identified in the same manner. Such a comparison would allow a more detailed 

investigation of the “quasi-duality” of the two functions from a practical point of view. The 

recent results in [23] suggest that the predictions of the in-plane variation of tensile yield stress 

and anisotropy coefficient may be slightly different between Yld2004-18p and Srp2004-18p, 

thus explaining part of the variability in Figure 5. 
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Figure 5. Results of the numerical simulation of cup drawing with Srp2004-18p; cup height 

profiles for the current simulation and the reference simulations in [41] and [23], compared to 

experiments.  

 

 

 

 

 

5 CONCLUSIONS  

 

A fully implicit state update algorithm for strain-rate-potential-based time-independent, 

anisotropic, large strain elastoplasticity models has been developed and described in detail. This 

paper provides a generic framework for the numerical implementation of various models that 

fall into this category. The numerical implementation of this algorithm in the commercial FE 

code Abaqus/Standard is accurate and robust enough to simulate typical sheet forming 

operations. 



 23 

 

The minimization problem that overcomes the absence of an explicit yield condition has been 

shown to induce virtually no additional cost. Therefore, yield-function-based and strain-rate-

potential-based constitutive algorithms can be considered equivalent in terms of numerical 

efficiency. The recent Srp2004-18p has been implemented in this framework and has shown 

predictive capabilities similar to the Yld2004-18p yield criterion, especially the ability to predict 

six-ear cup drawing profiles. 
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APPENDIX – COMPACT NOTATION FOR DEVIATORIC AND 

UNIT-LENGTH TENSORS 

 

Most tensor quantities involved in the plasticity equations (e.g., N) are symmetric and 

deviatoric, hence a five-component notation can be adopted to reduce the number of 

independent unknowns in the calculations:  

 

( )

( )

1 11 22

2 11 22

3 23

4 31

5 12

1

2

3

2

2

2

2

N N N

N N N

N N

N N

N N

= −

= +

=

=

=

 (55) 

 

Moreover, the minimization in Eq. (30) is performed with respect to the unit-length deviatoric 

symmetric tensor N which has only four independent components. In order to reduce the size of 

the problem and to avoid minimization under constraints, four angles are used to define N, as 

follows: 

 



 24 

 

1 1 2 3 4

2 1 2 3 4

3 2 3 4

4 3 4

5 4

cos sin sin sin

sin sin sin sin

cos sin sin

cos sin

cos

N

N

N

N

N

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ

θ

=

=

=

=

=

 (56) 

 

where 0≤ 1θ ≤2π and 0≤
i

θ ≤π, for i between 2 and 4.  

 

This contracted notation has several useful properties. Thus, it is easy to verify that the scalar 

products of two tensors A and B verify the following equalities 

 : ; 1,5 ; and 1,3ij ij I IA B A B I i j= = = =A B  (57) 

 

and, as a consequence, the norm of the tensor A verifies 

 

 
ij ij I I

A A A A= =A . (58) 
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