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ABSTRACT 

In the work presented in this paper, several strain rate potentials are examined in order to 

analyze their ability to model the initial stress and strain anisotropy of several orthotropic 

sheet materials. Classical quadratic and more advanced non-quadratic strain rate potentials are 

investigated in the case of FCC and BCC polycrystals. Different identifications procedures 

are proposed, which are taking into account the crystallographic texture and/or a set of 

mechanical test data in the determination of the material parameters.  

 

KEYWORDS: Anisotropic sheet metals, Strain rate potentials, Parameter identification, 

Plasticity, Micromechanical model. 

 

1. Introduction 

Numerical simulation is nowadays commonly used in industry for the optimization of the 

forming technologies for manufacturing new parts and products. Several commercial 

computer codes are available for this purpose. The accuracy of the simulations depends on the 

ability of the simulation codes to suitably describe the behaviour of the material during 
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forming. In sheet metal forming, materials are primarily characterized by their hardening 

behaviour and by their initial plastic anisotropy, which is mainly due to the crystallographic 

texture. The description of this initial anisotropy is one of the key factors that guarantee the 

reliability of the finite element simulations of forming processes. This is particularly true 

when final part properties like springback or forming limits are to be investigated. 

 

The initial plastic anisotropy of sheet metals can be assessed by means of micro-mechanical 

crystal plasticity calculations, considering the material as a collection of grains of different 

orientations, subjected to a given loading path, and obeying to the Schmid law. The well 

known Taylor model (Taylor, 1938; Bishop and Hill, 1951), as well as other polycrystal 

schemes such as self-consistent models (e.g. (Berveiller and Zaoui, 1979)), have been widely 

used for this purpose. However, the large computing times associated with this method have 

prevented its wide utilization in an industrial environment.  

 

Alternatively, continuum mechanics provides a general theoretical framework for the so-

called phenomenological description of plastic anisotropy. This approach is based on the use 

of plastic potentials and associated flow rules for the computation of stresses and strain rates. 

The potential can be defined either as a function of stresses (stress potential or yield function) 

or plastic strain rates (strain rate potential). The classical quadratic (Hill, 1948) criterion, 

widely implemented in commercial codes, provides an approximate description of the real 

yield locus. Hill himself proposed more complex yield functions (Hill, 1979; Hill, 1993), yet 

restricted to special loading conditions such as plane stress or assuming that the principal 

stress axes are also the orthotropic axes of the material. (Gotoh, 1977) introduced a plane-

stress, fourth-order polynomial yield function. (Budiansky, 1984) expressed the yield function 

in polar coordinates, an approach that was further developed by (Ferron et al., 1994). (Vegter, 

1991) proposed the representation of the yield function with the help of a Bezier interpolation 

of selected mechanical test results. An important contribution in this area has been made by 

(Hersey, 1954) and (Hosford, 1972) who introduced a very accurate yield function for 

isotropic polycrystals, as computed with crystal plasticity models. This yield function was 

generalized to orthotropic materials by (Barlat et al., 1991, 1997), (Karafillis and Boyce, 

1993), (Barlat et al., 2003). Reviews of anisotropic yield functions can be found in 

(Życzkowski, 2001; Banabic, 2001; Yu, 2002 and Barlat et al., 2004). Recently, (Barlat et al., 

2005) proposed a new yield criterion based on two linear transformation functions, while 
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(Cazacu and Barlat, 2001, 2003) proposed anisotropic extensions to Drucker’s yield criterion, 

based on the theory of representation of second-order tensors. 

 

As shown by (Ziegler, 1977 and Hill, 1987), two convex potentials dual of each other, exist 

from which the stress tensor can be derived as a function of the strain rate tensor and vice-

versa. 

Yield functions, such as those listed above, act as potential functions for the determination of 

the plastic strain rate tensor using the normality rule (only associated flow rules are 

considered in the current work, although the theory at hand is not restricted to this particular 

case). Any mathematical function used to define yielding could be transformed in order to 

describe a plastic potential in plastic strain rate space. However, except for a few specific 

cases, their analytical expression is virtually impossible to obtain. Equivalently, plastic 

potentials can be defined in the space of plastic strain rates using their gradient to derive the 

deviatoric stresses. Formally, the two approaches, stress or strain rate potential, are identical. 

For some applications such as rigid-plastic finite element (FE) simulations (Barlat et al., 

1994; Yoon et al., 1995; Chung et al. 1996, 1997), minimum plastic-work path calculations 

(Barlat et al., 1993), and analytical calculations in forming, the strain rate potential approach 

can be computationally more suitable. (Arminjon et al., 1991, 1994 and Van Houtte et al., 

1989) proposed fourth-order and sixth-order strain rate functions respectively. (Barlat and 

Chung, 1993; Barlat et al., 1993 and Chung et al., 1999) introduced strain rate potentials that 

were pseudo-dual of yield functions published earlier.  

 

Regardless of the type of potential, improved accuracy and versatility are obtained at the 

expense of a larger number of anisotropy parameters. Consequently, an increased number of 

mechanical tests are required for the identification of these material coefficients. Since Hill’s 

pioneering work on plastic anisotropy of sheet metals, the most popular experimental tests in 

this area are the tensile tests in the rolling, transverse and 45° directions. Either the 

corresponding Hill coefficients of anisotropy, yield stresses or both are used for the 

identification, depending on the number of parameters and the complexity of the potential. 

Nevertheless, most advanced anisotropic functions require more experimental data. Although 

additional tensile tests, along different directions with respect to the rolling direction can be 

used (e.g. (Gotoh, 1977)), it has been clearly shown that the use of the yield stress 

corresponding to a balanced biaxial stress state significantly improves the material description, 

e.g., (Lege et al., 1989). A corresponding biaxial anisotropy coefficient has also been defined 
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(Barlat et al., 2003; Pöhlandt et al., 2002) and used for identifying the parameters of plastic 

potentials. Specific experimental tests have been developed for the determination of these 

particular experimental data, (Kuwabara et al., 1998 and Barlat et al., 2003). 

 

The number of experimental values used for the identification is typically equal to the number 

of parameters. This may lead to poor predictions in areas of the yield locus that are not well 

represented in the set of experimental data used for the identification. For example, accurate 

mechanical tests are not easy (or even impossible) to perform in the through-thickness 

direction (typically in case of sheet materials). For this reason, even in the most advanced 

criteria, the coefficients corresponding to out-of-plane stress components are usually set to 

their isotropic values.  

 

The use of micromechanical simulation results provide a very inexpensive and still accurate 

alternative to non-conventional mechanical test data, which require the development of 

complex and costly experimental test settings. Several researchers use the predictions of 

crystal plasticity calculations for the identification of phenomenological plastic potentials. 

This approach is more suitable for the identification of strain rate potentials than the more 

classical stress potentials – especially when based on Taylor-like micromechanical models. 

Consequently, advanced identification procedures have been proposed for the identification of 

strain rate potentials (Arminjon and Bacroix, 1991; Van Houtte et al., 1989). The main 

interest of this approach is that the reference points used for the identification are uniformly 

distributed in the whole stress or strain rate space, thus enforcing a uniform accuracy in all 

possible loading directions. Nevertheless, subspaces of the stress or strain rate spaces that are 

of particular interest for the applications in mind can be given a preferential weight in the 

identification procedure.  

 

Since crystal plasticity models capture only part of the complex mechanisms and interactions 

occurring in a polycrystal, their predictions cannot be considered as accurate as the 

experiments. Nevertheless, it is generally accepted that even simple micromechanical models 

predict the initial yield surface with good accuracy. Thus, the traditional experimental 

identification approach can be used but some of the experimental values are replaced by their 

micromechanical counterparts (Kim et al., 2006). Alternatively, the available experimental 

data can be combined with the micromechanical simulations in a single cost function (Bacroix 

et al., 2003). Both the size and the shape of the yield locus can be determined in this manner, 
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ensuring an optimum balance between the experimental and micromechanical data, according 

to the available data and the user’s desire. 

 

In this work, both identification methods (using micromechanical or experimental test data) 

are used to investigate a newly developed plastic strain rate potential, called Srp2004-18p 

(Barlat and Chung, 2004). Other models proposed earlier by (Barlat et al., 1993 and Arminjon 

and Bacroix, 1991), as well as classical quadratic potentials, are used for comparison purpose. 

The Srp2004-18p strain rate potential is based on two linear transformations of the plastic 

strain rate tensor to account for the orthotropic anisotropy of the material, and involves 18 

anisotropy parameters. Its mathematical flexibility allows this model to predict the initial 

anisotropy better than most of the existing phenomenological potentials for a very wide range 

of materials, as recently shown by (Rabahallah et al., 2006). This is an interesting feature 

since a unique mathematical function could be used for all forming applications, while former 

mathematical functions were known to better perform for either BCC or FCC sheet materials, 

but not for both (Bacroix et al., 2003). Nevertheless, this theoretical advantage is subjected to 

the availability of sufficient experimental data and the accuracy of the parameter 

identification. 

 

In the next section several strain-rate potentials, including some of the most advanced ones, 

are briefly reviewed. Section 3 provides a detailed description of a parameter identification 

procedure based on texture measurements and micromechanical modelling of the reference 

data. Parameter identification using experimental data issued from mechanical tests is 

outlined in section 4. These two identification procedures are applied in section 5 to a series 

of anisotropic sheet metals, both FCC and BCC, and the impact of the identification 

procedure on the results is highlighted. 

2. Strain rate plastic potentials 

As shown by (Ziegler, 1977 and Hill, 1987), for many models of material behaviour, 

including plasticity, two convex dual potentials exist from which the stress tensor can be 

derived as a function of the strain rate tensor and vice-versa. In plasticity, the most classical 

formulation is the one that uses the yield criterion: 

 ( )φ = τσ , (1) 

where ( )φ σ  is a yield function, σ is the stress tensor and τ is a positive scalar with the 
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dimension of stress. The associated flow rule defines the plastic strain rate tensor D
p
 as: 

 
s

p ∂φ 
= λ  

∂ 
D

σ

ɺ , (2) 

Where the superscript s denotes the symmetric part, and λɺ  is a scalar function, which defines 

the elastic range and scales the plastic strain rate tensor under plastic loading. The dual 

potential ψ(D
p
) of this yield criterion is then simply written as 

 ( )pψ = λD ɺ , (3) 

and leads to 

 

s

p

∂ψ 
= τ 

∂ 
S

D
, (4) 

where S is the deviatoric part of σ. When the functions φ and ψ are made homogeneous of 

degree one with respect to their arguments, it is easy to show that the macroscopic plastic 

power associated to the strain rate tensor D
p
 is 

 ( )p p pW := = λτD S D ɺɺ , (5) 

therefore, 

 ( )
( )P p

p
W

ψ =
τ

D
D

ɺ

. (6) 

The function ψ acts as a power-equivalent measure of the plastic strain rate tensor, since the 

work rate is the same for all D
p
 with a common value of ψ(D

p
). Using eqs. (1) and (2), or (3) 

and (4) to describe the plastic behaviour of a material is thus completely equivalent. However, 

with the use of the dual potential, it becomes easy to compare an analytical description with a 

crystallographic approach since, in the latter case, it is much easier to calculate the 

macroscopic plastic power associated with a given strain rate tensor than to derive the 

macroscopic yield function. In this paper, beside the classical von Mises and Hill plastic 

potentials, three different quadratic and non-quadratic plastic potentials are considered. The 

mathematical forms of the latter are first briefly reviewed hereafter. 

2.1 The fourth order non quadratic potential « Quartus » 

The fourth-order polynomial function of the plastic strain rate tensor D
p
 proposed by 

(Arminjon and Bacroix, 1991) for orthotropic symmetry, is used in this work. This potential is 
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expressed as a function of only five independent components of 

Tp p p p p p

11 22 12 13 23[D , D ,D ,D ,D ]=D , due to the isochoric character of the plastic deformation: 

 ( )
( )p22

kp
k 3

pk 1

X

=

ψ = α∑
D

D

D

, (7) 

where 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

4 4 4 4
p p p p

1 11 2 22 3 23 4 13

24 3 3 2
p p p p p p p

5 12 6 11 22 7 22 11 8 11 22

2 2 2 2 2 2 2 2
p p p p p p p p

9 11 23 10 11 13 11 11 12 13 22 23

2 2 2 2 2 2 2 2
p p p p p p p p

13 22 13 14 22 12 15 23 13 16 23 12

2
p

17 13 12

X D X D X D X D

X D X D D X D D X D D

X D D X D D X D D X D D

X D D X D D X D D X D D

X D D

= = = =

= = = =

= = = =

= = = =

= ( ) ( ) ( ) ( )
2 2 2 2

p p p p p p p p p p

18 11 22 23 19 11 22 13 20 11 22 12

p p p p p p p p

21 11 23 13 12 22 22 23 13 12

X D D D X D D D X D D D

X D D D D X D D D D

= = =

= =

. (8) 

In Eq.(7), αk are material parameters, which can be expressed using explicit functions of the 

coefficients of the crystallographic orientation distribution function (ODF). ψ(D
p
) is first-

order homogeneous with respect to D
p
. It is worth noting that sixth-order homogeneous 

polynomial functions have been proposed (Van Houtte et al., 1992; Savoie and MacEwen, 

1996) that were able to further improve the anisotropy description. The major drawback of the 

fourth and sixth order potentials is that they are not convex for all values of their parameters. 

Van Houtte and Van Bael (2004) showed that the convexity is guaranteed when the material 

parameters satisfy a special mathematical condition that restricts the admissible ranges of the 

parameters. 

2.2 The non quadratic potential « Srp93 » 

The third strain rate potential selected for this work has been introduced by (Barlat et al., 

1993) in order to describe the behaviour of orthotropic materials. This potential was first 

developed for isotropic materials and subsequently extended to orthotropy using a linear 

transformation of the plastic strain rate tensor D
p
. Moreover, taking into account the 

assumption that the plastic flow occurs without volume change, the general form of the 

potential reduces to  

 ( )
 1/

p p pp
I II III

1
 D D D

k

µ
µ µ µ  ′ ′ ′ψ = + +  

  
D , (9) 
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where µ is a non-integer exponent and p
ID ′ , p

IID ′  and p
IIID ′  are the principal values of the 

isotropic-plastically-equivalent (IPE) strain rate p′D , which is obtained from the real strain 

rate tensor by the linear transformation p p
:′ =D L D  involving a fourth-order tensor L that 

contains the anisotropy coefficients. If orthotropic symmetry is assumed, this linear 

relationship involves only six anisotropy coefficients and can be written as 

 

p p
11 11

2 3 3 2
p p
22 223 3 1 1
p p

2 1 1 233 33

pp
4 2323

pp 5
3131

6 pp
1212

D D
(c c ) / 3 c / 3 c /3 0 0 0

D Dc / 3 (c c ) /3 c / 3 0 0 0

D Dc /3 c / 3 (c c ) / 3 0 0 0

0 0 0 c 0 0 DD

0 0 0 0 c 0
DD

0 0 0 0 0 c
DD

 ′  
  + − −   

′     − + −     
′  − − +  

=    
′    

    
′    

    ′    








. (10) 

Based on micromechanical observations, the authors recommend the values µ = 4/3 for FCC 

materials and µ = 3/2 for BCC materials (Barlat and Chung, 1993). Nevertheless, considering 

µ as an adjustable parameter, one can further improve the accuracy of the prediction – 

especially for BCC materials (Bacroix et al., 2003). 

2.3 The non quadratic potential « Srp2004-18p » 

(Barlat and Chung, 2005) have extended the flexibility of their former potential by adding a 

second linear transformation of the plastic strain rate tensor. The resulting function takes the 

following form: 

 ( )

 1/

p p p
I II III

p

2
p p p p p p
I II II III III I

 D D D  
1

2 2
D D D D D D

µ
µ µ µ

−µ µ µ µ

  ′ ′ ′+ + +  
ψ =   

+  ′′ ′′ ′′ ′′ ′′ ′′+ + + + +    

D ,  (11) 

 

where p′D  and p′′D  are obtained by the linear transformations p p
: :′ ′=D B T D  and 

p p
: :′′ ′′=D B T D . The matrix T represents the fourth-order symmetric, deviatoric unit tensor – 

while the two fourth-order tensors ′B  and ′′B  are the material anisotropy tensors. If the six-

component vector notation is used for p
D  like in Eq.(10), then the B-tensors take the 

following matrix form: 
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1 2

3 4

5 6

7

8

9

0 b b 0 0 0

b 0 b 0 0 0

b b 0 0 0 0

0 0 0 b 0 0

0 0 0 0 b 0

0 0 0 0 0 b

− − 
 − −
 
− − 

′ =  
 
 
 
 

B , (12) 

 

10 11

12 13

14 15

16

17

18

0 b b 0 0 0

b 0 b 0 0 0

b b 0 0 0 0

0 0 0 b 0 0

0 0 0 0 b 0

0 0 0 0 0 b

− − 
 − −
 
− − 

′′ =  
 
 
 
 

B . (13) 

Therefore, this potential contains 18 parameters – plus the exponent µ. 

Due to their availability in many computer codes, the classical von Mises and Hill quadratic 

potentials are used in this work as references. The fourth-order potential Quartus has been 

shown to be the best choice to describe the anisotropy of sheet steels, while the potential 

Srp93 exhibits a better accuracy for aluminium alloys. Thus, in this work they are both 

compared to the recently proposed potential Srp2004-18p. 

3. Texture-based identification procedure 

The comparison of different potentials is a particularly difficult task when they are based on 

experimental test results, since each of them is accompanied with a distinct parameter 

identification technique. When the number of parameters increases, additional experimental 

tests are needed to determine their values. Thus, the comparison becomes inconsistent since 

different numbers and types of mechanical tests are fitted with the different models. A 

completely different situation is provided when a texture-based identification method is 

employed. In this case a constant, very large number of evenly distributed reference points 

(i.e. various D
P
; typically here 80,000 plastic strain rate directions) are generated by means of 

micro-mechanical calculations, and further used for the parameter identification. Among other 

interesting advantages, this provides a consistent way to compare the relative flexibility of 

various plastic potentials. In the present work, the well-known Taylor-Bishop-Hill (TBH) 

micro-mechanical model is used in order to generate the flow surface based on 

crystallographic texture measurement. 
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3.1 Assessment of the yield locus by the crystallographic approach 

The crystallographic approach takes explicitly into account the texture of the material by 

considering the polycrystal as a collection of grains, each of them having a specific 

orientation. Plastic properties of the aggregate are then calculated from the response of each 

of its constituents to a given loading. This approach relies on several levels of approximation 

concerning the microscopic deformation mechanisms or the link between the imposed 

boundary conditions and the stress and strain rate in each grain. The (Taylor, 1938), Bishop 

and (Hill, 1951) (TBH) model belongs to this category and is interesting for several reasons: 

(i) first, the calculated yield surface is an upper bound of the real response of the material, (ii) 

the agreement between calculated and experimental properties is quite satisfactory and (iii) 

among the polycrystal models, it is one of the simplest to use. 

The TBH model is based on the assumption of plastic strain rate homogeneity: 

 
p p
g =D D , (14) 

where p
gD

 
designates the plastic strain rate tensor in grain g. It is assumed that the 

deformation is accommodated by slip, which obeys the Schmid law. The critical resolved 

shear stress τc is assumed to be the same for all slip systems in all grains. Knowing the strain 

rate in each grain, it is possible to calculate the plastic work rate in each grain: 

 ( )p p p
g g g gW :=D S Dɺ , ∀g (15) 

where the deviatoric stress Sg is determined through the principle of maximum plastic power 

associated to the Schmid law. The average plastic power for the aggregate can then be 

computed as 

 
P p P P

TBH g g

g

( ) W ( )f (g)dg= ∫D Dɺ ɺW , (16) 

with f(g) denoting the orientation distribution function which describes the texture of the 

material, and the integration is performed over the whole orientation space. The representative 

volume element is described using 2016 crystallographic orientations in the Euler space. 

Since the plastic power is homogeneous of degree one with respect to D
p
, it is sufficient to 

work with the direction N = D
p
/|D

p
| of D

p
. The normalized stress tensor S/τc is also considered. 
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3.2 Principle of the identification procedure 

Given a plastic strain rate direction N, the corresponding average plastic power ( )P

TBH NɺW  and 

the normalized expression ( )P

TBH

c

:Π =
τ

S
N N  can be computed according to the previous 

section. Eq.(6) is used in order to calculate of the same quantities by using the plastic 

potential. Moreover, the different potentials used in this work are described by homogeneous 

function of degree one. Therefore, Eq.(6) can be rewritten as  

 ( )
( )PW

ψ =
τ

N
N

ɺ

. (17) 

In other words, for any strain rate direction Ni, the previously defined two functions 

( )P

TBH iΠ N  and ( )iψ N  correspond to the plastic power associated to a unit-norm strain rate 

tensor and normalized by τc. The coefficients of the plastic potential ψ can then be identified 

by minimizing the objective function: 

 

( ) ( )

( )

80000 2
P

i TBH i i

1
Tex 80000 2

P

TBH i

1

(material parameters) =

=

 ⋅ Π − ψ 
=

 Π 

∑

∑

N N

N

i

i

w

F , (18) 

with respect to the coefficients of the chosen potential. The sum is performed over a number 

of selected strain rate directions. In order to sweep the 5D strain rate space uniformly, 80,000 

directions are selected in this space. The procedure for generating these directions is given in 

(Arminjon and Bacroix, 1991). Then, the values ψ(N) are computed for all these directions. 

This is a lengthy task, but it has to be performed only once for each material. 

 

When the expression of the potential is a linear function of the material coefficients; e.g. 

Eqs.Erreur ! Source du renvoi introuvable. and (7); the identification corresponds to a 

linear least-squares problem that may be solved in one iteration (Van Houtte et al., 1989; 

Arminjon and Bacroix, 1991). In order to extend the identification to any strain rate potential, 

the non-linear least-squares-problem is solved using a Levenberg-Marquardt minimization 

algorithm (Denis and Schnabel, 1983). This algorithm requires the calculation of the objective 

function and its first order derivatives with respect to the parameters subject to identification. 

 

It is worth noting that the terms of Eq. (18) are weighted by wi, where  



12 

 

( ) ( )
2

q2 2

13,i 23,i

i 1

1 cos N N

1 1
2

 
   + π +     = + β ⋅ − 
   
  
 

w , (19) 

while β1 and q are two real constants with values between 0 and 1 (although mathematically 

speaking, q may take any positive value). This weight function allows to increase the 

importance of the in-plane loading (i.e. the sheet plane) with regard to the out-of-plane 

loading. 

4. Identification procedure based on mechanical data 

Whether the number of experimental data is equal to or larger than the number of coefficients 

of the potential considered, it is necessary to apply the least-squares method based on an 

objective function for the identification. While the algorithm to determine the coefficients can 

be general for 3-D deformations, higher weights are given to the sheet in-plane data in the 

particular case of sheet forming applications. Also, while a variety of measurements can be 

considered, the combination of in-plane uniaxial tensile strength and r values along various 

directions, as well as the strength b xx yy( )σ = σ = σ  and strain rate ratio 
yy

b

xx

r ( )
ε

=
ε

ɺ

ɺ
 under the 

balanced biaxial stress condition are considered here. Out-of-plane property data such as pure 

shear or uniaxial tension at 45° from symmetry axes were assumed to be isotropic in this work 

in order to calculate the out-of-plane anisotropy coefficients. However, more generally, any 

other convenient deformation states could be considered for the out-of plane properties. When 

all the input data are selected, the coefficients are obtained in this work by minimizing the 

following objective function (see Kim et al., 2006): 

 

2 2
m m m m m

11 33 11 22 33
Mech m1 m2

m

22

xx yyxx zz b
r1 r2

2
n n

ij ij

n

n

F w w

w w

w

   µ∂ψ ∂ε −µ∂ψ ∂ε σ µ∂ψ ∂ε −µ∂ψ ∂ε
= − +   

σ σ σ   

 µ∂ψ ∂ε −µ∂ψ ∂ε µ ∂ψ ∂ε −µ∂ψ ∂ε σ
+ − +   

σ σ σ   

 µ ∂ψ ∂ε τ
+ − 

σ σ 

∑

∑

. (20) 

Here m represents the number of uniaxial yield stresses and r values available. The first term 

under the first summation sign corresponds to the (arbitrary) longitudinal uniaxial tensile 

stress (direction 1) when the imposed strain rate state is calculated with the associated r value. 



13 

The second term under the first summation sign corresponds to the (vanishing) stress 

transverse (direction 2) to the previously calculated longitudinal direction. The third and 

fourth terms correspond to balanced biaxial stress conditions when the imposed strain rate 

state is calculated with the associated 
b

r  value. Finally, n represents the number of 

experimental pure shear yield stresses available (from out of plane properties in this work). 

Each term in the objective function is multiplied by a weight w. 

 

The weight can be used to differentiate longitudinal, transverse or other stresses. However, in 

this work, these weights are identical for the in-plane properties of the sheet. Moreover, 

because some of the input data are not known but approximated under the isotropic 

assumption, the weights corresponding to these input data are made lower than the weight of 

experimental data, which are more reliable. Typically, in this work, weights for the in-plane 

and out-of-plane properties were of the order of 1.00 and 0.01, respectively.  

 

In Eq.(20), the potential is defined with respect to the strain components instead of the strain 

rate components since the potential can be redefined simply by replacing the strain rate with 

true (or logarithmic) strain when the deformation is monotonously proportional (Chung and 

Richmond, 1993). 

 

5. Application to steel and aluminium sheets 

For the investigation of the anisotropic plastic potentials, several BCC and FCC sheet 

materials have been selected. These materials provide a certain diversity of anisotropic 

behaviors with different initial crystallographic textures, leading to different initial anisotropy 

in terms of uniaxial yield stresses, r-values, and yield surface shapes. Either crystallographic 

texture measurements, or mechanical tests, or both have been performed on the selected 

materials. Therefore, an interesting basis is provided for the investigation of the ability of 

different strain rate potentials to describe plastic anisotropy. The present work has been 

carried out on a large range of industrial materials. However, for conciseness, only a selected 

set of characteristic examples are commented hereafter. 
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5.1 Crystallographic texture-based identification 

Figure 1 and 
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Figure 2 show an example of the anisotropy of the r-value and yield stresses (normalized by 

the critical resolved shear stress τc) predicted when the micromechanical-based adjustment 

procedure is used on different materials. The experimental data obtained using off-axis 

uniaxial tensile tests, are added in the figures for comparison. With regard to yield loci 

(normalized with the critical shear stress τc, Figure 3), the predictions of the quadratic 

potentials are clearly improved by the Srp2004-18p and Quartus potentials. However, 

discrepancies are observed in the prediction of the r-value specifically when the anisotropic 

behaviour is more pronounced (as for DC06 and AA6022-T43). It is noteworthy that with the 
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texture-based approach, the r-values are not used for the parameter identification and thus can 

be used for validation purposes.  
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Figure 1 r-value predictions for several potentials when crystallographic texture-based identification is 

adopted. (a) IF mild steel DC06, (b) Aluminium alloy AA6022-T43, (c) Dual Phase DP600 steel. 
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Figure 2 Yield stresses predictions for several potentials when crystallographic texture-based identification is 

adopted. (a) IF mild steel DC06, (b) Aluminium alloy AA6022-T43, (c) Dual Phase DP600 steel. 
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Figure 3 Yield surface predictions for several potentials when crystallographic texture-based identification is 

adopted (computation carried out with { }011 111  and { }112 111  slip families for bcc materials and 

{ }111 011  slip family for fcc materials). (a) IF mild steel DC06, (b) Aluminium alloy AA6022-T43, (c) Dual 

Phase DP600 steel. 
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Potentials 
Mechanical data-based Crystallographic data-based 

AA6022-
T43 

AA2090-
T3 

AA2008-
T4 

DP600 
AA6022-

T43 
DC06 DP600 

S
rp

2
0

0
4

-1
8

p
 

b1 0.4212 0.3899 0.9253 -0.3880 0.3174 0.9552 0.1341 
b2 -0.7992 0.6832 1.2680 0.8800 0.0152 0.9893 0.5141 

b3 1.0704 0.9090 1.3418 1.2600 0.7568 1.2842 1.1634 
b4 -0.1444 1.0109 1.1949 0.6980 0.2410 1.2377 1.0563 

b5 -0.0860 1.1323 0.3638 0.9020 0.4022 1.2117 0.6356 
b6 -0.4176 0.6264 0.3418 0.7440 0.2673 1.2144 0.5963 

b7 1.0120 1.0020 1.0600 1.0000 0.7076 1.3448 0.7458 
b8 1.1040 0.5635 0.9000 1.0000 0.4440 1.1439 -0.0087 
b9 0.9611 1.0703 1.2771 1.0000 0.1820 1.3870 0.5735 

b10 1.4010 1.3692 0.7990 1.1600 1.3642 0.5695 1.1936 
b11 1.0898 0.7683 0.9553 0.6360 1.4038 -0.4002 1.3097 

b12 0.8842 1.4545 0.7286 0.7700 1.4569 0.6464 1.2247 
b13 1.0281 0.6826 1.0405 0.9170 1.4284 -0.2051 1.1146 
b14 0.9415 0.9383 0.1169 1.1600 1.5882 -0.1529 1.3339 

b15 1.0724 1.1074 0.5947 0.4570 1.5605 -0.7111 1.0895 
b16 1.0120 1.0020 1.0600 1.0000 1.4803 -0.4046 1.1794 

b17 1.1040 0.5635 0.9000 1.0000 1.6225 -0.8189 1.5432 
b18 1.1758 0.5083 0.6863 1.0800 1.7888 0.5119 1.3890 
µ 1.4010 1.3333 1.3333 1.7800 1.2640 1.4990 1.5171 

S
rp

9
3
 

c1 0.8956 0.9056 0.8072 0.9920 0.9522 1.0968 1.0283 

c2 1.0089 0.9138 0.9663 0.9710 0.9903 1.0797 0.9924 
c3 1.0143 1.0606 1.0129 1.0000 1.0099 0.9263 1.0077 
c4 1.0000 1.0000 1.0000 1.0000 1.1031 0.9221 1.0064 

c5 1.0000 1.0000 1.0000 1.0000 1.0731 0.9391 1.0330 
c6 1.0352 0.8245 0.9958 1.0300 1.0756 1.0307 1.0260 

µ 1.3333 1.3333 1.3333 1.5000 1.3296 1.6063 1.5517 

Q
u

a
rt

u
s

 

α1 3.3262 3.0617 3.1603 3.2000 3.2751 3.4549 3.2096 

α2 3.1141 2.9778 2.8008 3.2400 3.1622 3.5051 3.3014 
α3 3.2660 3.2660 3.2660 3.2660 3.7685 2.9584 3.2765 

α4 3.2660 3.2660 3.2660 3.2660 3.6904 3.0204 3.3644 
α5 3.6043 2.4120 3.4445 3.3700 3.6739 3.2601 3.3360 
α6 6.4118 5.6264 6.0438 6.2600 6.5023 6.8453 6.3126 

α7 6.2361 6.4392 5.5018 6.2200 6.2727 6.9710 6.5265 
α8 9.5573 9.6742 8.8248 9.3100 9.5990 9.9496 9.5735 

α9 6.5320 6.5320 6.5320 6.5320 6.5111 6.6972 6.3561 
α10 6.5320 6.5320 6.5320 6.5320 6.9435 6.4091 6.4937 
α11 5.9286 5.9475 6.1642 6.4800 6.4006 6.9840 6.5316 

α12 6.5320 6.5320 6.5320 6.5320 6.8686 6.4387 6.5589 
α13 6.5320 6.5320 6.5320 6.5320 6.1979 6.8756 6.5502 

α14 6.0664 5.8206 5.6784 6.5000 6.5754 6.9564 6.5461 
α15 6.5320 6.5320 6.5320 6.5320 6.8321 5.7396 6.5308 

α16 6.5320 6.5320 6.5320 6.5320 6.7905 6.6667 6.3481 
α17 6.5320 6.5320 6.5320 6.5320 6.5335 6.7797 6.6062 
α18 6.5320 6.5320 6.5320 6.5320 7.0078 6.6227 6.5294 

α19 6.5320 6.5320 6.5320 6.5320 6.6083 6.8739 6.7160 
α20 5.5229 4.2424 5.1755 6.3900 5.9970 7.5806 6.5379 

α21 3.2660 3.2660 3.2660 3.2660 0.6137 -1.1834 -0.2269 
α22 3.2660 3.2660 3.2660 3.2660 0.1261 -0.8967 0.1035 

H
il

l’
4

8
 

F 1.0214 0.1713 0.1905 0.6380 0.8518 1.2413 0.9886 
G 0.9529 0.1351 0.1146 0.6380 0.7869 1.3007 1.0636 

H 0.9489 1.7023 1.4655 0.6610 1.0021 1.1085 1.0185 
L 3.0000 0.3200 0.3200 0.6670 2.4324 3.8472 2.9199 
M 3.0000 4.3478 2.6674 0.6670 2.3924 3.1423 2.9424 

N 2.9031 4.3956 4.5251 0.7320 3.0684 2.6108 3.0481 

von Mises 0.9290 1.0599 0.8204 0.6430 0.9049 1.1903 1.0593 

 

Table 1 Material parameters of the different plastic potentials for the materials under investigation, as identified 

with the two methods. Yield stresses normalized by σ0. 
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The sets of material parameters obtained in the current investigation are summarized in Table 

1. Figure 4 shows the comparison of the error function values, (Eq.(18)), obtained after the 

identification of the investigated potentials for the different BCC and FCC materials. The 

conclusions drawn in (Bacroix et al., 2003) are again verified for the materials tested in this 

work: Srp93 provides better predictions than Quartus for aluminium alloys, while Quartus 

does better for all steels. In contrast, the recent Srp2004-18p potential provides a better fit 

than both Srp93 and Quartus in all cases. The main interest of the texture-based identification 

procedure is that it provides such consistent comparison between different potentials. The 

above conclusions have been found for more than ten different aluminium alloys and ten 

different steel sheets. Thus one may consider that, among the potentials considered in this 

work, Srp2004-18p has great chances to provide the best fit for virtually any metal sheet in 

these categories. 
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Figure 4 Error function for several BCC (IF mild steel DC06, Dual Phase steel DP600 and micro-alloyed steels 

HSLA with different thicknesses) and FCC materials (Al-Mg AA5182-O, Al-Mg-Si AA6022-T4 and AA6016-

T4) using different potentials and texture-based identification. 
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The sensitivity of the predicted results to some numerical aspects (initial guess for the 

parameters, objective function weights, the number of iterations…) has been carefully 

investigated in this work. Although the adopted algorithm is known to be robust and efficient, 

it is sensitive to the initial parameters guess, like most of the minimization algorithms seeking 

for the closest local minimum. Figure 5 and 6 present the sensitivity of the material 

parameters identification to the initial introduced solution for fixed β1 and q parameters. As 

one can see, the impact of the initial set of parameters on the shape of the yield surface is 

negligible (Figure 6). However, when the r-value or the yield stress anisotropies are checked, 

some differences are found. This suggests that these two important measures of anisotropy 

could also be included in the objective function for a better controlled identification. 

Nevertheless, it should be noted that the r-values predicted by the Taylor model are less 

reliable than the yield surface itself. In the example from Figure 5, the impact of the initial 

guess is smaller than the gap between the micromechanical and the experimental r-values. 
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Figure 5 Aluminium alloy AA6022-T43: Sensitivity analysis to the initial guess of parameters for 

crystallographic texture-based identification carried out on Srp2004-18p strain rate potential with β1 = 1 and q 

= 1. 
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Figure 6 Aluminium alloy AA6022-T43: Sensitivity analysis to the initial guess of parameters for 

crystallographic texture-based identification carried out on Srp2004-18p strain rate potential. 

 

 

When crystallographic-data-based identification is adopted, the cost function uses 80,000 

“experimental values” on the yield surface, Eq. (18). A specific weighting factor wi, Eq. (19) 

for every strain rate direction can be imposed. This factor is intended to give a smaller weight 

to the through-thickness shear modes (wi = 1 when the components of the plastic strain rate 

tensor lie in the plane of the sheet and wi = 1 - β1 for purely through-thickness shear modes). 

Thus β1 = 1 allows for a complete discrimination of the later deformation modes. When β1 ≠ 0, 

the q parameter intensifies the effect of β1. With regard to the numerical results in Figure 7 

and Figure 8, the same conclusions can be drawn as for the sensitivity to the initial parameter 

guess: the impact on the yield surface is subtle, while there is a significant sensitivity of the 

Hill coefficients of anisotropy and uniaxial tensile yield stress to the weights adopted in the 

cost function. In our comparative studies, both the coefficients β1 and q have been kept equal 

to one for consistent comparisons. No need to say here that such sensitivity aspects were 

already reported in published researches relative to the optimization algorithm. However, the 

general trends reported later were obtained taking under consideration such sensitivity studies. 
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Figure 7 Aluminium alloy AA6022-T43: Sensitivity analysis to the value of q, for crystallographic texture-based 

identification carried out on Srp2004-18p strain rate potential with β1 = 1. 

 

 

 

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

TBH

β
1
 = 0

β
1
 = 0.3

β
1
 = 0.5

β
1
 = 0.6

β
1
 = 0.8

β
1
 = 1

Experimental data

r(
α

)

α(°)

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

0 10 20 30 40 50 60 70 80 90

TBH
β

1
 = 0

β
1
 = 0.3

β
1
 = 0.5

β
1
 = 0.6

β
1
 = 0.8

β
1
 = 1

Experimental data

σ
1

1
/τ

c

α(°)  

Figure 8 Aluminium alloy AA6022-T43: Sensitivity analysis to the value of β1, for crystallographic texture-

based identification carried out on Srp2004-18p strain rate potential with q = 1. 

 

 

5.2 Mechanical data-based identification 

Figure 9 and Figure 10 depict an example of the best fit predictions obtained with the five 

potentials when mechanical data-based adjustments are used. The predictions of the quadratic 

potentials are clearly improved by the three other potentials (Srp93, Srp2004-18p and 

Quartus). Moreover, Srp2004-18p systematically improves the predictions of Srp93 (Figure 
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11). When mechanical data-adjustment approach is adopted, Srp2004-18p seems to exhibit 

more flexibility in accurately describing the yielding behaviour of the examined aluminium 

alloys (e.g. Figure 9, Figure 12 and  

Figure 13). Consequently, the comparison of the different potentials’ flexibility leads to 

similar conclusions as when the texture-based identification is used.  However, Quartus 

appears here to perform better than Srp93 even for aluminium alloys, in terms of objective 

function. In fact, a more careful examination of the results reveals that for aluminium alloys, 

the best-fit set of parameters for Quartus often leads to a non-convex yield surface, as 

illustrated in Figure 14. The major difficulty for this potential appears to be the simultaneous 

fit of both the uniaxial tensile experiments and the biaxial one. Reducing the weight of the 

biaxial point in the cost function leads to acceptable solutions (convex yield surface). This is 

how the results for Quartus have been obtained in the figures above. Yet, the corresponding 

cost functions cannot be compared anymore to the other ones since the considered weights are 

different. It is noteworthy that with the texture-based identification, no loss of convexity has 

been detected for Quartus. This is attributed to the use of numerous, evenly distributed, 

equally weighted reference points for the identification, which prevent any unrealistic 

distortion of the yield surface. 
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Figure 9 Aluminium alloy AA6022-T43: Yield stress and r-value predictions for several potentials when 

mechanical data-based identification is adopted. 
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Figure 10 Aluminium alloy AA6022-T43: Yield surface predictions for several potentials when mechanical 

data -based identification is adopted. 
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Figure 11 Error function for several materials using different potentials and mechanical data-based identification. 
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Figure 12 Al-Li aluminium alloy AA2090-T3: Yield stress and r-value predictions for several potentials when 

mechanical data-based identification is adopted. 
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Figure 13 Aluminium alloy AA2008-T4: Experimental yield stress and r-value and predictions based on several 

potentials. Mechanical data-based identification. 
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Figure 14 Predictions of the Quartus potential for aluminium alloy AA2090-T3: best fit results (thin line) and 

acceptable solution that does not violate convexity (thick line). The parameter wr1 corresponds to the weight 

affected to the équibiaxiale yield stress as defined in Eq. (20). 

 

 

 

 

When the material exhibits weak in-plane anisotropy (e.g. the dual phase steel DP600 in this 

work), the identified yield surfaces obtained with the different potentials are very close to the 

von Mises yield surface. Nonetheless, the predicted Hill coefficients of anisotropy can be very 

different as indicated by Figure 1 (c) for DP600 steel. For this material, when the mechanical 

data-based approach is adopted, a significant improvement in the predicted Hill coefficients 

of anisotropy is achieved (Figure 15) with general yield loci close to the von Mises surface 

(Figure 16). A careful inspection of the predicted yield locus using the two identification 

strategies clearly indicates that the normal to the yield surfaces can be very different (Figure 

17, a). These differences can be even larger when the in-plane anisotropy become more 

pronounced as for the AA6022-T43 material (Figure 17, b). 
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Figure 15 Dual Phase DP600 steel: Experimental yield stress and r-value and predictions based on several 

potentials. Mechanical data-based identification. 
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Figure 16 Dual Phase DP600 steel: Yield surface predictions for several potentials when mechanical data-

based identification is adopted. 
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Figure 17 Determined Srp2004-18p yield surface using different strategies of material parameters identification. 

 

 

 

Depending on the procedure used to identify the parameters, the resulting predictions of 

plastic anisotropy are slightly different. It can be observed that when mechanical test data is 

used for the identification, the predictions of the r-value and yield stress anisotropy with all 

the non-quadratic potentials are closer to each other while the scatter in the prediction of the 

yield surface is more significant (Figure 10). On the contrary, a larger scatter in r-values and 

yield stress anisotropy predictions is obtained with the texture-based identification (Figure 1-b 
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and 
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Figure 2-b). Figure 16 and Figure 18 provide very typical examples, where the prediction of 

the plane strain tension stresses is very different from a potential to the other, while the 

mechanical-test based anisotropy is predicted almost identically.  

 

The origin of this behaviour is again the discrepancy in the number, type and location of the 

reference data used for the parameter fit in the two identification procedures. Figure 19 shows 

the respective reference (experimental) data used in both cases. The texture-based 

identification makes use of an extensive, evenly-distributed set of reference points (plastic 

strain rate directions), while the mechanical tests provide a more reduced set of specific data, 
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including both stress values and plastic strain rate directions. More specifically, the plane 

strain tension area is poorly represented in the commonly used set of experiments – which 

may explain e.g. the scatter in Figure 18 corresponding to this area. However, diversifying the 

mechanical tests is an extremely challenging task. 
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Figure 18 Yield surface predictions for several potentials when mechanical data -based identification is adopted: 

Aluminium alloy AA2008-T4. 
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Figure 19 Tri-component (σ11- σ22- σ12) normalised yield surface representation and location of the reference 

points for the two identification procedures. A fictitious isotropic, von Mises-like material is illustrated here. 
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One can easily duplicate the available tests by means of the micromechanical model, so that 

similar data and the same procedure can be used for the identification. Figure 1 and 
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Figure 2 show the r-value and yield stress anisotropy as measured and as predicted by the 

Taylor model, for three materials. It is obvious that for some materials, the Taylor model 

leads to poor predictions of these anisotropy indicators. Consequently, in such situations the 

texture-based identification method does not provide a good accuracy, unless a more accurate 

micromechanical description of the plastic anisotropy is obtained. For this purpose, different 

micromechanical models (e.g. self-consistent models, finite element polycrystalline models 

etc.) could be used in the framework of the current approach, without any limitation. 
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The texture-based identification procedure can also be penalized in terms of final accuracy if 

an equal weight is considered for all the reference points in the 5D deviatoric plastic strain 

rate space. Indeed, while this guarantees a consistent fit of the whole space of possible 

straining modes, practical sheet forming applications exhibit near plane-stress loading 

situations. Thus, one should prescribe lower weights to the out-of-plane shear terms, e.g. with 

the weight function (Eq.(19)). 

 

 

 

5.3 Combined strategy for material parameters identification 

When both mechanical test data and crystallographic texture are available, one can combine 

the advantages of the two parameter identification methods by combining the two error 

functions in a single one: 

 ( )2 Tex 2 MechF F 1 F= β + − β , (21) 

 

where FTex is defined by Eq. (19) and FMech by Eq.(20). This approach has been applied here 

for the AA6016-T4 aluminium alloy, by using the Srp93 potential. The Taylor-predicted data 

is combined with experimentally determined shear yield stresses. As shown in Figure 20, 

when only the texture-based function is used (e.g. β2=1) the anisotropy of the experimental 

shear stresses is very poorly reproduced by the identified parameters. Decreasing the value of 

β2 allows for a progressive improvement of the fit, until the results of the mechanical-test-

based identification procedure are completely recovered. In such cases, when the Taylor 

model does not accurately describe the r-values and/or uniaxial yield stresses, one should use 

the mechanical test data to identify as many parameters as possible. Nevertheless, several 

parameters cannot be identified with the experimental data alone; instead of arbitrarily 

keeping their values to the isotropic case, using the Taylor model contributes to improve the 

final identification result. 
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Figure 20 Aluminium alloy AA6016-T4: experimental and predicted yield stress anisotropy, using the combined 

identification. 

 

 

 

6. Conclusion 

The present work clearly highlights the impact of the identification method (using either 

texture data or mechanical tests) on the resulting accuracy. Overall, the advantage of the 

recent Srp2004-18p potential is demonstrated for a wide range of initial material anisotropy. 

Nonetheless, the fourth-order series expansion Quartus still remains attractive for the present 

FCC and especially BCC materials. The comparison of the two identification strategies, using 

either experimental or micromechanical data, reveals that introducing a combined adjustment 

making use of the two procedures would probably enhance the description of the initial 

anisotropy. However, the practical use of the texture-based identification heavily relies on the 

ability of the micromechanical model to describe accurately the plastic anisotropy of the 

material. The different potentials studied in this work have been implemented in the finite 

element code Abaqus. Ongoing work will focus on the impact of the identification strategy 

(micromechanical-based or mechanical data-based) on the prediction of the earing profile of a 

cup after drawing of a circular blank. 
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