246 research outputs found

    Re-Os isotope and platinum group elements of a FOcal ZOne mantle source, Louisville Seamounts Chain, Pacific ocean

    Get PDF
    The Louisville Seamount Chain (LSC) is, besides the Hawaiian-Emperor Chain, one of the longest-lived hotspot traces. We report here the first Re-Os isotope and platinum group element (PGE) data for Canopus, Rigil, and Burton Guyots along the chain, which were drilled during IODP Expedition 330. The LSC basalts possess (187Os/188Os)i = 0.1245–0.1314 that are remarkably homogeneous and do not vary with age. A Re-Os isochron age of 64.9 ± 3.2 Ma was obtained for Burton seamount (the youngest of the three seamounts drilled), consistent with 40Ar-39Ar data. Isochron-derived initial 187Os/188Os ratio of 0.1272 ± 0.0008, together with data for olivines (0.1271–0.1275), are within the estimated primitive mantle values. This (187Os/188Os)i range is similar to those of Rarotonga (0.124–0.139) and Samoan shield (0.1276–0.1313) basalts and lower than those of Cook-Austral (0.136–0.155) and Hawaiian shield (0.1283–0.1578) basalts, suggesting little or no recycled component in the LSC mantle source. The PGE data of LSC basalts are distinct from those of oceanic lower crust. Variation in PGE patterns can be largely explained by different low degrees of melting under sulfide-saturated conditions of the same relatively fertile mantle source, consistent with their primitive mantle-like Os and primordial Ne isotope signatures. The PGE patterns and the low 187Os/188Os composition of LSC basalts contrast with those of Ontong Java Plateau (OJP) tholeiites. We conclude that the Re-Os isotope and PGE composition of LSC basalts reflect a relatively pure deep-sourced common mantle sampled by some ocean island basalts but is not discernible in the composition of OJP tholeiites

    New Olivine Reference Material for In Situ Microanalysis

    Get PDF
    A new olivine reference material – MongOL Sh11‐2 – for in situ analysis has been prepared from a central portion of a large (20 cm × 20 cm × 10 cm) mantle peridotite xenolith from a ~ 0.5 Ma old basaltic breccia at Shavaryn‐Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration. Approximately 10 g of 0.5 to 2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA‐ICP‐MS, SIMS and bulk analytical methods (ID ICP‐MS for Mg and Fe, XRF, ICP‐MS) for major, minor and trace elements at six institutions worldwide. The results show that the olivine fragments are sufficiently homogeneous with respect to major (Mg, Fe, Si) and minor and trace elements. Significant inhomogeneity was revealed only for phosphorus (homogeneity index of 12.4), whereas Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index of 1–2). The presence of some mineral and fluid‐melt micro‐inclusions may be responsible for the inconsistency in mass fractions obtained by in situ and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information values for twenty‐seven major, minor and trace elements

    Effect of the interaction between physical activity and estimated macronutrient intake on HbA1c : population-based cross-sectional and longitudinal studies

    Get PDF
    Introduction Healthy diet and physical activity (PA) are essential for preventing type 2 diabetes, particularly, a combination of diet and PA. However, reports on interaction between PA and diet, especially from large epidemiological studies, are limited. We investigated the effect of interaction between PA and macronutrient intake on hemoglobin A1c (HbA1c) levels in the general population. Research design and methods We conducted a cross-sectional study of 55 469 men and women without diabetes who participated in the baseline survey of the Japan Multi-Institutional Collaborative Cohort Study. A self-administered questionnaire ascertained PA and macronutrient intake (carbohydrate, fat, and protein). Multiple linear regression analyses were performed to adjust for confounding variables and examine the interactions. In addition, we conducted a longitudinal study during a 5-year period within a subcohort (n=6881) with accelerometer-assessed PA data. Results Overall, PA had a weak inverse association (β=−0.00033, p=0.049) and carbohydrate intake had a strong positive association (β=0.00393, p<0.001) with HbA1c. We observed a tendency of interactions between PA and carbohydrate or fat intake, but not protein intake, on HbA1c levels after adjusting for age, sex, study area, total energy intake, alcohol consumption, smoking, and medication for hypertension or hypercholesterolemia (Pinteraction=0.054, 0.006, and 0.156, respectively). The inverse associations between PA and HbA1c level were more evident in participants with high-carbohydrate (or low-fat) intake than in participants with low-carbohydrate (or high-fat) intake. Although further adjustment for body mass index slightly attenuated the above interactions (Pinteraction=0.098 for carbohydrate and 0.068 for fat), the associations between PA and HbA1c level in stratified analyses remained unchanged. Similar associations and interactions were reproduced in the longitudinal study. Conclusions The present results suggest that the effect of PA on HbA1c levels is modified by intake of macronutrient composition

    Reworking of Archean craton in the eastern Madagascar

    Get PDF
    第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月30日(金) 統計数理研究所 3階セミナー

    A genome-wide association study on meat consumption in a Japanese population : the Japan Multi-Institutional Collaborative Cohort study

    Get PDF
    Recent genome-wide association studies (GWAS) on the dietary habits of the Japanese population have shown that an effect rs671 allele was inversely associated with fish consumption, whereas it was directly associated with coffee consumption. Although meat is a major source of protein and fat in the diet, whether genetic factors that influence meat-eating habits in healthy populations are unknown. This study aimed to conduct a GWAS to find genetic variations that affect meat consumption in a Japanese population. We analysed GWAS data using 14 076 participants from the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. We used a semi-quantitative food frequency questionnaire to estimate food intake that was validated previously. Association of the imputed variants with total meat consumption per 1000 kcal energy was performed by linear regression analysis with adjustments for age, sex, and principal component analysis components 1–10. We found that no genetic variant, including rs671, was associated with meat consumption. The previously reported single nucleotide polymorphisms that were associated with meat consumption in samples of European ancestry could not be replicated in our J-MICC data. In conclusion, significant genetic factors that affect meat consumption were not observed in a Japanese population

    Missing western half of the Pacific Plate: Geochemical nature of the Izanagi-Pacific Ridge interaction with a stationary boundary between the Indian and Pacific mantles

    Get PDF
    The source mantle of the basaltic ocean crust on the western half of the Pacific Plate was examined using Pb–Nd–Hf isotopes. The results showed that the subducted Izanagi–Pacific Ridge (IPR) formed from both Pacific (180–∼80 Ma) and Indian (∼80–70 Ma) mantles. The western Pacific Plate becomes younger westward and is thought to have formed from the IPR. The ridge was subducted along the Kurile–Japan–Nankai–Ryukyu (KJNR) Trench at 60–55 Ma and leading edge of the Pacific Plate is currently stagnated in the mantle transition zone. Conversely, the entire eastern half of the Pacific Plate, formed from isotopically distinct Pacific mantle along the East Pacific Rise and the Juan de Fuca Ridge, largely remains on the seafloor. The subducted IPR is inaccessible; therefore, questions regarding which mantle might be responsible for the formation of the western half of the Pacific Plate remain controversial. Knowing the source of the IPR basalts provides insight into the Indian–Pacific mantle boundary before the Cenozoic. Isotopic compositions of the basalts from borehole cores (165–130 Ma) in the western Pacific show that the surface oceanic crust is of Pacific mantle origin. However, the accreted ocean floor basalts (∼80–70 Ma) in the accretionary prism along the KJNR Trench have Indian mantle signatures. This indicates the younger western Pacific Plate of IPR origin formed partly from Indian mantle and that the Indian–Pacific mantle boundary has been stationary in the western Pacific at least since the Cretaceous

    Isotopic evidence for a link between the Lyra Basin and Ontong Java Plateau

    Get PDF
    The few geological and geophysical studies of the Lyra Basin at the western margin of 45 the Ontong Java Plateau (OJP; Pacific Ocean) revealed that it is underlain by thicker than normal 46 oceanic crust. The unusually thick oceanic crust is attributed to the emplacement of massive lava 47 flows from the OJP. Dredging was conducted to sample the inferred OJP crust on the Lyra Basin 48 but instead recovered younger extrusives that may have covered the older plateau lavas in the 49 area. The Lyra Basin extrusives are alkalic basalts with (87Sr/86Sr)t = 0.704513-0.705105, 50 (143Nd/144Nd)t = 0.512709-0.512749, εNd(t) = +3.0 to +3.8, (206Pb/204Pb)t = 18.488-18.722, 51 (207Pb/204Pb)t = 15.558-15.577, and (208Pb/204Pb)t = 38.467-38.680, values that are distinct from 52 those of the OJP tholeiites. They have age-corrected (187Os/188Os)t = 0.1263-0.1838 that overlap 53 with the range of values determined for the Kroenke-type and Kwaimbaita-type OJP basalts, but 54 their (176Hf/177Hf)t = 0.28295-0.28299 and εHf(t) = +7.9 to +9.3 values are lower. These isotopic 55 compositions do not match those of any Polynesian ocean island volcanics. Instead, the Lyra 56 Basin basalts have geochemical affinity and isotopic compositions that overlap with those of 57 some alkalic suite and alnoites in the island of Malaita, Solomon Islands. Although not directly 58 related to the main plateau volcanism at 120 Ma, the geochemical data and modeling suggest that 59 the origin of the Lyra Basin alkalic rocks may be genetically linked to the mantle preserved in 60 the OJP thick lithospheric root, with magmatic contribution from the Rarotongan hotspot
    corecore