188 research outputs found

    Self-adaptive Authorisation in OpenStack Cloud Platform

    Get PDF
    Although major advances have been made in protection of cloud platforms against malicious attacks, little has been done regarding the protection of these platforms against insider threats. This paper looks into this challenge by introducing self-adaptation as a mechanism to handle insider threats in cloud platforms, and this will be demonstrated in the context of OpenStack. OpenStack is a popular cloud platform that relies on Keystone, its identity management component, for controlling access to its resources. The use of self-adaptation for handling insider threats has been motivated by the fact that self-adaptation has been shown to be quite effective in dealing with uncertainty in a wide range of applications. Insider threats have become a major cause for concern since legitimate, though malicious, users might have access, in case of theft, to a large amount of information. The key contribution of this paper is the definition of an architectural solution that incorporates self-adaptation into OpenStack Keystone in order to handle insider threats. For that, we have identified and analysed several insider threats scenarios in the context of the OpenStack cloud platform, and have developed a prototype that was used for experimenting and evaluating the impact of these scenarios upon the self-adaptive authorisation system for the cloud platforms

    Is the NEI-VFQ-25 a useful tool in identifying visual impairment in an elderly population?

    Get PDF
    BACKGROUND: The use of self-report questionnaires to substitute for visual acuity measurement has been limited. We examined the association between visual impairment and self reported visual function in a population sample of older people in the UK. METHODS: Cross sectional study of people aged more than 75 years who initially participated in a trial of health screening. The association between 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ) scores and visual impairment (defined as an acuity of less than 6/18 in the better eye) was examined using logistic regression. RESULTS: Visual acuity and NEI-VFQ scores were obtained from 1807 participants (aged 77 to 101 years, 36% male), from 20 general practices throughout the UK. After adjustment for age, gender, practice and NEI-VFQ sub-scale scores, those complaining of poor vision in general were 4.77 times (95% CI 3.03 to 7.53) more likely to be visually impaired compared to those who did not report difficulty. Self-reported limitations with social functioning and dependency on others due to poor vision were also associated with visual impairment (odds ratios, 2.52, 95% CI 1.55 to 4.11; 1.73, 95% CI 1.05 to 2.86 respectively). Those reporting difficulties with near vision and colour vision were more likely to be visually impaired (odds ratios, 2.32, 95% CI 1.30 to 4.15; 2.25, 95% CI 1.35 to 3.73 respectively). Other NEI-VFQ sub-scale scores were unrelated to measures of acuity. Similar but weaker odds ratios were found with reduced visual acuity (defined as less than 6/12 in the better eye). Although differences in NEI-VFQ scores were small, scores were strongly associated with visual acuity, binocular status, and difference in acuity between eyes. CONCLUSION: NEI-VFQ questions regarding the quality of general vision, social functioning, visual dependency, near vision and colour vision are strongly and independently associated with an objective measure of visual impairment in an elderly population

    BAC-Based Sequencing of Behaviorally-Relevant Genes in the Prairie Vole

    Get PDF
    The prairie vole (Microtus ochrogaster) is an important model organism for the study of social behavior, yet our ability to correlate genes and behavior in this species has been limited due to a lack of genetic and genomic resources. Here we report the BAC-based targeted sequencing of behaviorally-relevant genes and flanking regions in the prairie vole. A total of 6.4 Mb of non-redundant or haplotype-specific sequence assemblies were generated that span the partial or complete sequence of 21 behaviorally-relevant genes as well as an additional 55 flanking genes. Estimates of nucleotide diversity from 13 loci based on alignments of 1.7 Mb of haplotype-specific assemblies revealed an average pair-wise heterozygosity (8.4Γ—10βˆ’3). Comparative analyses of the prairie vole proteins encoded by the behaviorally-relevant genes identified >100 substitutions specific to the prairie vole lineage. Finally, our sequencing data indicate that a duplication of the prairie vole AVPR1A locus likely originated from a recent segmental duplication spanning a minimum of 105 kb. In summary, the results of our study provide the genomic resources necessary for the molecular and genetic characterization of a high-priority set of candidate genes for regulating social behavior in the prairie vole

    Audiovisual time perception is spatially specific

    Get PDF
    Our sensory systems face a daily barrage of auditory and visual signals whose arrival times form a wide range of audiovisual asynchronies. These temporal relationships constitute an important metric for the nervous system when surmising which signals originate from common external events. Internal consistency is known to be aided by sensory adaptation: repeated exposure to consistent asynchrony brings perceived arrival times closer to simultaneity. However, given the diverse nature of our audiovisual environment, functionally useful adaptation would need to be constrained to signals that were generated together. In the current study, we investigate the role of two potential constraining factors: spatial and contextual correspondence. By employing an experimental design that allows independent control of both factors, we show that observers are able to simultaneously adapt to two opposing temporal relationships, provided they are segregated in space. No such recalibration was observed when spatial segregation was replaced by contextual stimulus features (in this case, pitch and spatial frequency). These effects provide support for dedicated asynchrony mechanisms that interact with spatially selective mechanisms early in visual and auditory sensory pathways

    Generation of Induced Pluripotent Stem Cells from the Prairie Vole

    Get PDF
    The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC) lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the molecular and neural basis of pair bond formation

    Development of a measure of model fidelity for mental health Crisis Resolution Teams

    Get PDF
    Background Crisis Resolution Teams (CRTs) provide short-term intensive home treatment to people experiencing mental health crisis. Trial evidence suggests CRTs can be effective at reducing hospital admissions and increasing satisfaction with acute care. When scaled up to national level however, CRT implementation and outcomes have been variable. We aimed to develop and test a fidelity scale to assess adherence to a model of best practice for CRTs, based on best available evidence. Methods A concept mapping process was used to develop a CRT fidelity scale. Participants (n = 68) from a range of stakeholder groups prioritised and grouped statements (n = 72) about important components of the CRT model, generated from a literature review, national survey and qualitative interviews. These data were analysed using Ariadne software and the resultant cluster solution informed item selection for a CRT fidelity scale. Operational criteria and scoring anchor points were developed for each item. The CORE CRT fidelity scale was then piloted in 75 CRTs in the UK to assess the range of scores achieved and feasibility for use in a 1-day fidelity review process. Trained reviewers (n = 16) rated CRT service fidelity in a vignette exercise to test the scale’s inter-rater reliability. Results There were high levels of agreement within and between stakeholder groups regarding the most important components of the CRT model. A 39-item measure of CRT model fidelity was developed. Piloting indicated that the scale was feasible for use to assess CRT model fidelity and had good face validity. The wide range of item scores and total scores across CRT services in the pilot demonstrate the measure can distinguish lower and higher fidelity services. Moderately good inter-rater reliability was found, with an estimated correlation between individual ratings of 0.65 (95% CI: 0.54 to 0.76). Conclusions The CORE CRT Fidelity Scale has been developed through a rigorous and systematic process. Promising initial testing indicates its value in assessing adherence to a model of CRT best practice and to support service improvement monitoring and planning. Further research is required to establish its psychometric properties and international applicability

    Mating alters gene expression patterns in Drosophila melanogaster male heads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Behavior is a complex process resulting from the integration of genetic and environmental information. <it>Drosophila melanogaster </it>rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression.</p> <p>Results</p> <p>We used <it>Drosophila </it>genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, <it>female-specific independent of transformer </it>(<it>fit</it>), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates <it>Drosophila</it> reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, <it>Juvenile hormone esterase </it>(<it>Jhe</it>), is necessary for robust male courtship behavior and mating success.</p> <p>Conclusions</p> <p>Our study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.</p

    Hard-Object Feeding in Sooty Mangabeys (Cercocebus atys) and Interpretation of Early Hominin Feeding Ecology

    Get PDF
    Morphology of the dentofacial complex of early hominins has figured prominently in the inference of their dietary adaptations. Recent theoretical analysis of craniofacial morphology of Australopithecus africanus proposes that skull form in this taxon represents adaptation to feeding on large, hard objects. A modern analog for this specific dietary specialization is provided by the West African sooty mangabey, Cercocebus atys. This species habitually feeds on the large, exceptionally hard nuts of Sacoglottis gabonensis, stereotypically crushing the seed casings using their premolars and molars. This type of behavior has been inferred for A. africanus based on mathematical stress analysis and aspects of dental wear and morphology. While postcanine megadontia, premolar enlargement and thick molar enamel characterize both A. africanus and C. atys, these features are not universally associated with durophagy among living anthropoids. Occlusal microwear analysis reveals complex microwear textures in C. atys unlike those observed in A. africanus, but more closely resembling textures observed in Paranthropus robustus. Since sooty mangabeys process hard objects in a manner similar to that proposed for A. africanus, yet do so without the craniofacial buttressing characteristic of this hominin, it follows that derived features of the australopith skull are sufficient but not necessary for the consumption of large, hard objects. The adaptive significance of australopith craniofacial morphology may instead be related to the toughness, rather than the hardness, of ingested foods

    Perceptual Learning in the Absence of Task or Stimulus Specificity

    Get PDF
    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment
    • …
    corecore