77 research outputs found
The channel-activating protease CAP1/Prss8 is required for placental labyrinth maturation.
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increased expression of CAP1/Prss8, thus suggesting a placental defect in the knockout situation. The placentas of knockout embryos exhibited significantly reduced vascular development and incomplete cellular maturation. In contrary, epiblast-specific deletion of CAP1/Prss8 allowed development until birth. These CAP1/Prss8-deficient newborns presented abnormal epidermis, and died soon after birth due to impaired skin function. We thus conclude that a late placental insufficiency might be the primary cause of embryonic lethality in CAP1/Prss8 knockouts. This study highlights a novel and crucial role for CAP1/Prss8 in placental development and function
Vitamin D and Calcium Supplementation Accelerates Randall's Plaque Formation in a Murine Model
Most kidney stones are made of calcium oxalate crystals. Randall\u27s plaque, an apatite deposit at the tip of the renal papilla, is considered to at the origin of these stones. Hypercalciuria may promote Randall\u27s plaque formation and growth. We analyzed whether long-term exposure of Abcc6 mice (a murine model of Randall\u27s plaque) to vitamin D supplementation, with or without a calcium-rich diet, would accelerate the formation of Randall\u27s plaque. Eight groups of mice (including Abcc6 and wild type) received vitamin D alone (100,000 UI/kg every 2 weeks), a calcium-enriched diet alone (calcium gluconate 2 g/L in drinking water), both vitamin D supplementation and a calcium-rich diet, or a standard diet (controls) for 6 months. Kidney calcifications were assessed by 3-dimensional microcomputed tomography, μ-Fourier transform infrared spectroscopy, field emission-scanning electron microscopy, transmission electron microscopy, and Yasue staining. At 6 months, Abcc6 mice exposed to vitamin D and calcium supplementation developed massive Randall\u27s plaque when compared with control Abcc6 mice (P < 0.01). Wild-type animals did not develop significant calcifications when exposed to vitamin D. Combined administration of vitamin D and calcium significantly accelerates Randall\u27s plaque formation in a murine model. This original model raises concerns about the cumulative risk of vitamin D supplementation and calcium intakes in Randall\u27s plaque formation
Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members
SGLT2 (for “Sodium GLucose coTransporter” protein 2) is the major protein responsible for glucose reabsorption in the kidney and its inhibition has been the focus of drug discovery efforts to treat type 2 diabetes. In order to better clarify the human tissue distribution of expression of SGLT2 and related members of this cotransporter class, we performed TaqMan™ (Applied Biosystems, Foster City, CA, USA) quantitative polymerase chain reaction (PCR) analysis of SGLT2 and other sodium/glucose transporter genes on RNAs from 72 normal tissues from three different individuals. We consistently observe that SGLT2 is highly kidney specific while SGLT5 is highly kidney abundant; SGLT1, sodium-dependent amino acid transporter (SAAT1), and SGLT4 are highly abundant in small intestine and skeletal muscle; SGLT6 is expressed in the central nervous system; and sodium myoinositol cotransporter is ubiquitously expressed across all human tissues
TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells
Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury
Deletion of Nedd4-2 results in progressive kidney disease in mice
NEDD4-2 (NEDD4L), a ubiquitin protein ligase of the Nedd4 family, is a key regulator of cell surface expression and activity of the amiloride-sensitive epithelial Na⁺ channel (ENaC). While hypomorphic alleles of Nedd4-2 in mice show salt-sensitive hypertension, complete knockout results in pulmonary distress and perinatal lethality due to increased cell surface levels of ENaC. We now show that Nedd4-2 deficiency in mice also results in an unexpected progressive kidney injury phenotype associated with elevated ENaC and Na⁺Cl⁻ cotransporter expression, increased Na⁺ reabsorption, hypertension and markedly reduced levels of aldosterone. The observed nephropathy is characterized by fibrosis, tubule epithelial cell apoptosis, dilated/cystic tubules, elevated expression of kidney injury markers and immune cell infiltration, characteristics reminiscent of human chronic kidney disease. Importantly, we demonstrate that the extent of kidney injury can be partially therapeutically ameliorated in mice with nephron-specific deletions of Nedd4-2 by blocking ENaC with amiloride. These results suggest that increased Na⁺ reabsorption via ENaC causes kidney injury and establish a novel role of NEDD4-2 in preventing Na⁺-induced nephropathy. Contrary to some recent reports, our data also indicate that ENaC is the primary in vivo target of NEDD4-2 and that Nedd4-2 deletion is associated with hypertension on a normal Na⁺ diet. These findings provide further insight into the critical function of NEDD4-2 in renal pathophysiology.Tanya L Henshall, Jantina A Manning, Omri S Alfassy, Pranay Goel, Natasha A Boase, Hiroshi Kawabe and Sharad Kuma
Inactivation of sodium-transporting proteins in the kidney
The kidney plays a dominant role in maintaining sodium homeostasis. The control of a nearly constant electrolyte composition and osmotic pressure in the extracellular fluids is achieved by well-regulated vectorial salt and water transport processes. Derangement in function of Na(+) transporting proteins is likely to be responsible for a number of clinical disorders of fluid and electrolyte homeostasis. The identification of the genes implicated in sodium reabsorption in the kidney not only allows a detailed analysis of regulation and function of these proteins in vitro but also the generation of genetically engineered mice that constitute valuable mouse models for human diseases. Our review will focus on recent strategies for generating nephron segment-specific knock-outs for the main apical renal Na(+) transporters and channels
- …