60 research outputs found
Brugia malayi Microfilariae Induce a Regulatory Monocyte/Macrophage Phenotype That Suppresses Innate and Adaptive Immune Responses
Background Monocytes and macrophages contribute to the dysfunction of immune
responses in human filariasis. During patent infection monocytes encounter
microfilariae in the blood, an event that occurs in asymptomatically infected
filariasis patients that are immunologically hyporeactive. Aim To determine
whether blood microfilariae directly act on blood monocytes and in vitro
generated macrophages to induce a regulatory phenotype that interferes with
innate and adaptive responses. Methodology and principal findings Monocytes
and in vitro generated macrophages from filaria non-endemic normal donors were
stimulated in vitro with Brugia malayi microfilarial (Mf) lysate. We could
show that monocytes stimulated with Mf lysate develop a defined regulatory
phenotype, characterised by expression of the immunoregulatory markers IL-10
and PD-L1. Significantly, this regulatory phenotype was recapitulated in
monocytes from Wuchereria bancrofti asymptomatically infected patients but not
patients with pathology or endemic normals. Monocytes from non-endemic donors
stimulated with Mf lysate directly inhibited CD4+ T cell proliferation and
cytokine production (IFN-γ, IL-13 and IL-10). IFN-γ responses were restored by
neutralising IL-10 or PD-1. Furthermore, macrophages stimulated with Mf lysate
expressed high levels of IL-10 and had suppressed phagocytic abilities.
Finally Mf lysate applied during the differentiation of macrophages in vitro
interfered with macrophage abilities to respond to subsequent LPS stimulation
in a selective manner. Conclusions and significance Conclusively, our study
demonstrates that Mf lysate stimulation of monocytes from healthy donors in
vitro induces a regulatory phenotype, characterized by expression of PD-L1 and
IL-10. This phenotype is directly reflected in monocytes from filarial
patients with asymptomatic infection but not patients with pathology or
endemic normals. We suggest that suppression of T cell functions typically
seen in lymphatic filariasis is caused by microfilaria-modulated monocytes in
an IL-10-dependent manner. Together with suppression of macrophage innate
responses, this may contribute to the overall down-regulation of immune
responses observed in asymptomatically infected patients
Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.
Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology
Filarial Lymphedema Is Characterized by Antigen- Specific Th1 and Th17 Proinflammatory Responses and a Lack of Regulatory T Cells
Background: Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema,
hydrocele, and elephantiasis in a subset of infected patients.
Methods and Findings: To elucidate the role of CD4+ T cell subsets in the development of lymphatic pathology, we
examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA) and
compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like
receptors (TLR1–10) and Nod-like receptors (Nod1, Nod2, and NALP3) in response to BmA. BmA induced significantly higher
production of Th1-type cytokines—IFN-c and TNF-a—in patients with lymphedema compared with asymptomatic
individuals. Notably, expression of the Th17 family of cytokines—IL-17A, IL-17F, IL-21, and IL-23—was also significantly
upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFb, and CTLA-4, known
to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced
significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with
asymptomatic controls.
Conclusion: Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of
Toll- and Nod-like receptors in pathogenesis of filarial lymphedema
Th2 Cell-Intrinsic Hypo-Responsiveness Determines Susceptibility to Helminth Infection
The suppression of protective Type 2 immunity is a principal factor driving the chronicity of helminth infections, and has been attributed to a range of Th2 cell-extrinsic immune-regulators. However, the intrinsic fate of parasite-specific Th2 cells within a chronic immune down-regulatory environment, and the resultant impact such fate changes may have on host resistance is unknown. We used IL-4gfp reporter mice to demonstrate that during chronic helminth infection with the filarial nematode Litomosoides sigmodontis, CD4(+) Th2 cells are conditioned towards an intrinsically hypo-responsive phenotype, characterised by a loss of functional ability to proliferate and produce the cytokines IL-4, IL-5 and IL-2. Th2 cell hypo-responsiveness was a key element determining susceptibility to L. sigmodontis infection, and could be reversed in vivo by blockade of PD-1 resulting in long-term recovery of Th2 cell functional quality and enhanced resistance. Contrasting with T cell dysfunction in Type 1 settings, the control of Th2 cell hypo-responsiveness by PD-1 was mediated through PD-L2, and not PD-L1. Thus, intrinsic changes in Th2 cell quality leading to a functionally hypo-responsive phenotype play a key role in determining susceptibility to filarial infection, and the therapeutic manipulation of Th2 cell-intrinsic quality provides a potential avenue for promoting resistance to helminths
Functional Impairment of Human Myeloid Dendritic Cells during Schistosoma haematobium Infection
Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis
Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro
Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm E. multilocularis, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC in vitro and show that E/S-products of larvae of the chronic stage lead to an in vitro expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of E. multilocularis larvae within the host
Mosquito Infection Responses to Developing Filarial Worms
Human lymphatic filariasis is a mosquito-vectored disease caused by the nematode parasites Wuchereria bancrofti, Brugia malayi and Brugia timori. These are relatively large roundworms that can cause considerable damage in compatible mosquito vectors. In order to assess how mosquitoes respond to infection in compatible mosquito-filarial worm associations, microarray analysis was used to evaluate transcriptome changes in Aedes aegypti at various times during B. malayi development. Changes in transcript abundance in response to the different stages of B. malayi infection were diverse. At the early stages of midgut and thoracic muscle cell penetration, a greater number of genes were repressed compared to those that were induced (20 vs. 8). The non-feeding, intracellular first-stage larvae elicited few differences, with 4 transcripts showing an increased and 9 a decreased abundance relative to controls. Several cecropin transcripts increased in abundance after parasites molted to second-stage larvae. However, the greatest number of transcripts changed in abundance after larvae molted to third-stage larvae and migrated to the head and proboscis (120 induced, 38 repressed), including a large number of putative, immunity-related genes (∼13% of genes with predicted functions). To test whether the innate immune system of mosquitoes was capable of modulating permissiveness to the parasite, we activated the Toll and Imd pathway controlled rel family transcription factors Rel1 and Rel2 (by RNA interference knockdown of the pathway's negative regulators Cactus and Caspar) during the early stages of infection with B. malayi. The activation of either of these immune signaling pathways, or knockdown of the Toll pathway, did not affect B. malayi in Ae. aegypti. The possibility of LF parasites evading mosquito immune responses during successful development is discussed
Stage- and Gender-Specific Proteomic Analysis of Brugia malayi Excretory-Secretory Products
To succeed in infection, parasites must have ways to reach the host, penetrate its tissues and escape its defense systems. As they are not necessarily fatal, most helminth parasites remain viable within their host for many years, exerting a strong influence over the host immune function. Many of these functions are performed by products that are released from the parasite. We exploited the remarkable sensitivity of modern proteomics tools together with the availability of a sequenced genome to identify and compare the proteins released in vitro by adult males, adult females and the microfilariae of the filarial nematode Brugia malayi. This parasite is one of the etiological agents of lymphatic filariasis, a disease that poses continuing and significant threats to human health. The different forms of the parasite inhabit different compartments in the mammalian host. We found that the set of proteins released by each form is unique; they must reflect particular developmental processes and different strategies for evasion of host responses. The identification of these proteins will allow us to illuminate the biology of secretory processes in this organism and to establish a path for developing an understanding of how these parasite proteins function in immune evasion events
Altered T Cell Memory and Effector Cell Development in Chronic Lymphatic Filarial Infection That Is Independent of Persistent Parasite Antigen
Chronic lymphatic filarial (LF) infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN), microfilaria (mf) positive infected patients (Inf) had a reduced CD4 central memory (TCM) compartment. In addition, Inf patients tended to have more effector memory cells (TEM) and fewer effector cells (TEFF) than did ENs giving significantly smaller TEFF ∶ TEM ratios. These contracted TCM and TEFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf). Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells), was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted TCM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children makes early treatment of LF even more crucial
The effect of preoperative keratometry on visual outcomes after moderate myopic LASIK
Steven M Christiansen1, Marcus C Neuffer1, Shameema Sikder2, Rodmehr T Semnani1, Majid Moshirfar11John A Moran Eye Center, University of Utah, Salt Lake City, UT, 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MA, USAPurpose: To evaluate visual outcomes in moderately myopic eyes with flat and steep corneas (preoperatively) that have been treated with laser-assisted in situ keratomileusis (LASIK).Patients and methods: Records of ninety-six eyes with average preoperative keratometry (K) values between 39.9 and 42.0 diopters (D) (flat) were matched with 103 eyes with preoperative K values between 46.0 and 47.2 D (steep) that underwent LASIK between March 2007 and March 2010 for moderate myopia, and were retrospectively reviewed. The primary outcome measures used to determine the effect of preoperative keratometry on visual prognosis were refraction, visual acuity, change in keratometry (ΔK), and change in spherical equivalent (ΔSE), measured at 1, 3, 6, and 12 months postoperatively.Results: Significant differences were found at 6 months postoperatively between the flat group and steep group in SE (P = 0.029), sphere (P = 0.018), ΔK (P = 0.002), percentage of eyes achieving SE of −0.25 to + 0.25 D (P = 0.0125), −0.26 to −0.50 D (P = 0.003), −0.51 to −1.00 D (P = 0.044), and the percentage of eyes achieving uncorrected distance visual acuity of 20/15 or better (P = 0.0006).Conclusion: Moderately myopic eyes with flatter corneas preoperatively have better visual prognosis following LASIK compared with moderately myopic eyes with steeper corneas.Keywords: keratometry, cornea, LASIK, refractive surger
- …
