117 research outputs found

    Potential therapeutic implications of new insights into respiratory syncytial virus disease

    Get PDF
    Viral bronchiolitis is the most common cause of hospitalization in infants under 6 months of age, and 70% of all cases of bronchiolitis are caused by respiratory syncytial virus (RSV). Early RSV infection is associated with respiratory problems such as asthma and wheezing later in life. RSV infection is usually spread by contaminated secretions and infects the upper then lower respiratory tracts. Infected cells release proinflammatory cytokines and chemokines, including IL-1, tumor necrosis factor-Ξ±, IL-6, and IL-8. These activate other cells and recruit inflammatory cells, including macrophages, neutrophils, eosinophils, and T lymphocytes, into the airway wall and surrounding tissues. The pattern of cytokine production by T lymphocytes can be biased toward 'T-helper-1' or 'T-helper-2' cytokines, depending on the local immunologic environment, infection history, and host genetics. T-helper-1 responses are generally efficient in antiviral defense, but young infants have an inherent bias toward T-helper-2 responses. The ideal intervention for RSV infection would be preventive, but the options are currently limited. Vaccines based on protein subunits, live attenuated strains of RSV, DNA vaccines, and synthetic peptides are being developed; passive antibody therapy is at present impractical in otherwise healthy children. Effective vaccines for use in neonates continue to be elusive but simply delaying infection beyond the first 6 months of life might reduce the delayed morbidity associated with infantile disease

    Evidence for Induction of Integron-Based Antibiotic Resistance by the SOS Response in a Clinical Setting

    Get PDF
    Bacterial resistance to Ξ²-lactams may rely on acquired Ξ²-lactamases encoded by class 1 integron-borne genes. Rearrangement of integron cassette arrays is mediated by the integrase IntI1. It has been previously established that integrase expression can be activated by the SOS response in vitro, leading to speculation that this is an important clinical mechanism of acquiring resistance. Here we report the first in vivo evidence of the impact of SOS response activated by the antibiotic treatment given to a patient and its output in terms of resistance development. We identified a new mechanism of modulation of antibiotic resistance in integrons, based on the insertion of a genetic element, the gcuF1 cassette, upstream of the integron-borne cassette blaOXA-28 encoding an extended spectrum Ξ²-lactamase. This insertion creates the fused protein GCUF1-OXA-28 and modulates the transcription, the translation, and the secretion of the Ξ²-lactamase in a Pseudomonas aeruginosa isolate (S-Pae) susceptible to the third generation cephalosporin ceftazidime. We found that the metronidazole, not an anti-pseudomonal antibiotic given to the first patient infected with S-Pae, triggered the SOS response that subsequently activated the integrase IntI1 expression. This resulted in the rearrangement of the integron gene cassette array, through excision of the gcuF1 cassette, and the full expression the Ξ²-lactamase in an isolate (R-Pae) highly resistant to ceftazidime, which further spread to other patients within our hospital. Our results demonstrate that in human hosts, the antibiotic-induced SOS response in pathogens could play a pivotal role in adaptation process of the bacteria

    Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of Labour

    Get PDF
    Division of labour (DoL) is a fundamental organisational principle in human societies, within virtual and robotic swarms and at all levels of biological organisation. DoL reaches a pinnacle in the insect societies where the most widely used model is based on variation in response thresholds among individuals, and the assumption that individuals and stimuli are well-mixed. Here, we present a spatially explicit model of DoL. Our model is inspired by Pierre de Gennes' 'Ant in a Labyrinth' which laid the foundations of an entire new field in statistical mechanics. We demonstrate the emergence, even in a simplified one-dimensional model, of a spatial patterning of individuals and a right-skewed activity distribution, both of which are characteristics of division of labour in animal societies. We then show using a two-dimensional model that the work done by an individual within an activity bout is a sigmoidal function of its response threshold. Furthermore, there is an inverse relationship between the overall stimulus level and the skewness of the activity distribution. Therefore, the difference in the amount of work done by two individuals with different thresholds increases as the overall stimulus level decreases. Indeed, spatial fluctuations of task stimuli are minimised at these low stimulus levels. Hence, the more unequally labour is divided amongst individuals, the greater the ability of the colony to maintain homeostasis. Finally, we show that the non-random spatial distribution of individuals within biological and social systems could be caused by indirect (stigmergic) interactions, rather than direct agent-to-agent interactions. Our model links the principle of DoL with principles in the statistical mechanics and provides testable hypotheses for future experiments

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life

    Healthy Lifestyle and Leukocyte Telomere Length in U.S. Women

    Get PDF
    Context: Whether a healthy lifestyle may be associated with longer telomere length is largely unknown. Objectives: To examine healthy lifestyle practices, which are primary prevention measures against major age-related chronic diseases, in relation to leukocyte telomere length. Design and Setting: Cross-sectional analysis in the Nurses' Health Study (NHS). Participants: The population consisted of 5,862 women who participated in multiple prospective case-control studies within the NHS cohort. Z scores of leukocyte telomere length were derived within each case-control study. Based on prior work, we defined low-risk or healthy categories for five major modifiable factors assessed in 1988 or 1990: non-current smoking, maintaining a healthy body weight (body mass index in 18.5-24.9 kg/m(2)), engaging in regular moderate or vigorous physical activities (>= 150 minutes/week), drinking alcohol in moderation (1 drink/week to,2 drinks/day), and eating a healthy diet (Alternate Healthy Eating Index score in top 50%). We calculated difference (%) of the z scores contrasting low-risk groups with reference groups to evaluate the association of interest. Results: Although none of the individual low-risk factors was significantly associated with larger leukocyte telomere length z scores, we observed a significant, positive relationship between the number of low-risk factors and the z scores. In comparison with women who had zero low-risk factors (1.9% of the total population) and were, therefore, considered the least healthy group, the leukocyte telomere length z scores were 16.4%, 22.1%, 28.7%, 22.6%, and 31.2% (P for trend = 0.015) higher for women who had 1 to 5 low-risk factors, respectively. Conclusions: Adherence to a healthy lifestyle, defined by major modifiable risk factors, was associated with longer telomere length in leukocytes

    Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARΞ³ Signalling in Cigarette Smoke–Stimulated Macrophages

    Get PDF
    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 Β΅M). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKΞ± and IkBΞ±. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARΞ³ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARΞ³ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARΞ³ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARΞ³ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages

    Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.Fundação de Amparo a Pesquisa do Estado de São Paulo/FAPESP [05/51467-0]; [04/12054-9]; [07/50894-7]Ludwig Institute for Cancer ResearchConselho Nacional de Pesquisas/CNPqCoordenacao de Aperfeicoamento do Pessoal do Ensino Superior/CAPE

    Ataluren treatment of patients with nonsense mutation dystrophinopathy

    Get PDF
    Introduction: Dystrophinopathy is a rare, severe muscle disorder, and nonsense mutations are found in 13% of cases. Ataluren was developed to enable ribosomal readthrough of premature stop codons in nonsense mutation (nm) genetic disorders. Methods: Randomized, double‐blind, placebo‐controlled study; males β‰₯5 years with nm‐dystrophinopathy received study drug orally 3 times daily, ataluren 10, 10, 20 mg/kg (N = 57); ataluren 20, 20, 40 mg/kg (N = 60); or placebo (N = 57) for 48 weeks. The primary endpoint was change in 6‐Minute Walk Distance (6MWD) at Week 48. Results: Ataluren was generally well tolerated. The primary endpoint favored ataluren 10, 10, 20 mg/kg versus placebo; the week 48 6MWD Δ = 31.3 meters, post hoc P = 0.056. Secondary endpoints (timed function tests) showed meaningful differences between ataluren 10, 10, 20 mg/kg, and placebo. Conclusions: As the first investigational new drug targeting the underlying cause of nm‐dystrophinopathy, ataluren offers promise as a treatment for this orphan genetic disorder with high unmet medical need

    The P2X1 receptor and platelet function

    Get PDF
    Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of Ξ±IIbΞ²3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques
    • …
    corecore