158 research outputs found

    A Twistor Description of Six-Dimensional N=(1,1) Super Yang-Mills Theory

    Get PDF
    We present a twistor space that describes super null-lines on six-dimensional N=(1,1) superspace. We then show that there is a one-to-one correspondence between holomorphic vector bundles over this twistor space and solutions to the field equations of N=(1,1) super Yang-Mills theory. Our constructions naturally reduce to those of the twistorial description of maximally supersymmetric Yang-Mills theory in four dimensions.Comment: 15 pages, typos fixed, published versio

    Spin-resolved Quantum Interference in Graphene

    Full text link
    The unusual electronic properties of single-layer graphene make it a promising material system for fundamental advances in physics, and an attractive platform for new device technologies. Graphene's spin transport properties are expected to be particularly interesting, with predictions for extremely long coherence times and intrinsic spin-polarized states at zero field. In order to test such predictions, it is necessary to measure the spin polarization of electrical currents in graphene. Here, we resolve spin transport directly from conductance features that are caused by quantum interference. These features split visibly in an in-plane magnetic field, similar to Zeeman splitting in atomic and quantum dot systems. The spin-polarized conductance features that are the subject of this work may, in the future, lead to the development of graphene devices incorporating interference-based spin filters.Comment: 12 pages, 4 figures, plus supplementary (11 pages, 9 figures

    Prioritized memory access explains planning and hippocampal replay.

    Get PDF
    To make decisions, animals must evaluate candidate choices by accessing memories of relevant experiences. Yet little is known about which experiences are considered or ignored during deliberation, which ultimately governs choice. We propose a normative theory predicting which memories should be accessed at each moment to optimize future decisions. Using nonlocal 'replay' of spatial locations in hippocampus as a window into memory access, we simulate a spatial navigation task in which an agent accesses memories of locations sequentially, ordered by utility: how much extra reward would be earned due to better choices. This prioritization balances two desiderata: the need to evaluate imminent choices versus the gain from propagating newly encountered information to preceding locations. Our theory offers a simple explanation for numerous findings about place cells; unifies seemingly disparate proposed functions of replay including planning, learning, and consolidation; and posits a mechanism whose dysfunction may underlie pathologies like rumination and craving

    Non-Redundant Selector and Growth-Promoting Functions of Two Sister Genes, buttonhead and Sp1, in Drosophila Leg Development

    Get PDF
    The radically distinct morphologies of arthropod and tetrapod legs argue that these appendages do not share a common evolutionary origin. Yet, despite dramatic differences in morphology, it has been known for some time that transcription factors encoded by the Distalless (Dll)/Dlx gene family play a critical role in the development of both structures. Here we show that a second transcription factor family encoded by the Sp8 gene family, previously implicated in vertebrate limb development, also plays an early and fundamental role in arthropod leg development. By simultaneously removing the function of two Sp8 orthologs, buttonhead (btd) and Sp1, during Drosophila embryogenesis, we find that adult leg development is completely abolished. Remarkably, in the absence of these factors, transformations from ventral to dorsal appendage identities are observed, suggesting that adult dorsal fates become derepressed when ventral fates are eliminated. Further, we show that Sp1 plays a much more important role in ventral appendage specification than btd and that Sp1 lies genetically upstream of Dll. In addition to these selector-like gene functions, Sp1 and btd are also required during larval stages for the growth of the leg. Vertebrate Sp8 can rescue many of the functions of the Drosophila genes, arguing that these activities have been conserved, despite more than 500 million years of independent evolution. These observations suggest that an ancient Sp8/Dlx gene cassette was used in an early metazoan for primitive limb-like outgrowths and that this cassette was co-opted multiple times for appendage formation in multiple animal phyla

    Silver(I) and mercury(II) complexes of meta- and para-xylyl linked bis(imidazol-2-ylidenes)

    Get PDF
    Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands withlinear coordination modes have been prepared and structurally characterised. The complexes form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the form [L2Ag2]2+ [where L = parabis(N-methylimidazolylidene)xylylene] has been isolated from the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-transfer reactions, the mercury case being only the second example of a NHC-transfer reaction using a mercury-NHC complex

    Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles

    Get PDF
    To evaluate the presence of components of a putative Intracellular Lactate Shuttle (ILS) in neurons, we attempted to determine if monocarboxylate (e.g. lactate) transporter isoforms (MCT1 and -2) and lactate dehydrogenase (LDH) are coexpressed in neuronal mitochondria of rat brains. Immunohistochemical analyses of rat brain cross-sections showed MCT1, MCT2, and LDH to colocalize with the mitochondrial inner membrane marker cytochrome oxidase (COX) in cortical, hippocampal, and thalamic neurons. Immunoblotting after immunoprecipitation (IP) of mitochondria from brain homogenates supported the histochemical observations by demonstrating that COX coprecipitated MCT1, MCT2, and LDH. Additionally, using primary cultures from rat cortex and hippocampus as well as immunohistochemistry and immunocoprecipitation techniques, we demonstrated that MCT2 and LDH are coexpressed in mitochondria of cultured neurons. These findings can be interpreted to mean that, as in skeletal muscle, neurons contain a mitochondrial lactate oxidation complex (mLOC) that has the potential to facilitate both intracellular and cell-cell lactate shuttles in brain

    Taking it personally: the effect of ethnic attachment on preferences for regionalism

    Get PDF
    This article presents three related findings on regional decentralization. We use an original dataset collected in Uganda to establish, for the first time in a developing country context, that individuals have meaningful preferences over the degree of regional decentralization they desire, ranging from centralism to secessionism. Second, multilevel models suggest that a small share of this variation is explained at the district and ethnic group levels. The preference for regional decentralization monotonically increases with an ethnic group or a district’s average ethnic attachment. However, the relationship with an ethnic group or district’s income is U-shaped: both the richest and the poorest groups desire more regionalism, reconciling interest-based and identity-based explanations for regionalism. Finally, we show that higher individual ethnic attachment increases preferences for regionalism using fixed effects and a new matching method

    Y-Chromosome Variation in Hominids: Intraspecific Variation Is Limited to the Polygamous Chimpanzee

    Get PDF
    The original publication is available at www.plosone.orgBackground: We have previously demonstrated that the Y-specific ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y) varied with respect to copy number and position among chimpanzees (Pan troglodytes). In comparison, seven Y-chromosomal lineages of the bonobo (Pan paniscus), the chimpanzee’s closest living relative, showed no variation. We extend our earlier comparative investigation to include an analysis of the intraspecific variation of these genes in gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus), and examine the resulting patterns in the light of the species’ markedly different social and mating behaviors. Methodology/Principal Findings: Fluorescence in situ hybridization analysis (FISH) of DAZ and CDY in 12 Y-chromosomal lineages of western lowland gorilla (G. gorilla gorilla) and a single lineage of the eastern lowland gorilla (G. beringei graueri) showed no variation among lineages. Similar findings were noted for the 10 Y-chromosomal lineages examined in the Bornean orangutan (Pongo pygmaeus), and 11 Y-chromosomal lineages of the Sumatran orangutan (P. abelii). We validated the contrasting DAZ and CDY patterns using quantitative real-time polymerase chain reaction (qPCR) in chimpanzee and bonobo. Conclusion/Significance: High intraspecific variation in copy number and position of the DAZ and CDY genes is seen only in the chimpanzee. We hypothesize that this is best explained by sperm competition that results in the variant DAZ and CDY haplotypes detected in this species. In contrast, bonobos, gorillas and orangutans—species that are not subject to sperm competition—showed no intraspecific variation in DAZ and CDY suggesting that monoandry in gorillas, and preferential female mate choice in bonobos and orangutans, probably permitted the fixation of a single Y variant in each taxon. These data support the notion that the evolutionary history of a primate Y chromosome is not simply encrypted in its DNA sequences, but is also shaped by the social and behavioral circumstances under which the specific species has evolved.Funded by the Deutsche Forschungsgemeinschaft (SCHE 214/8)Publisher's versio

    Exploring Predictors of Outcome in the Psychosis Prodrome: Implications for Early Identification and Intervention

    Get PDF
    Functional disability is a key component of many psychiatric illnesses, particularly schizophrenia. Impairments in social and role functioning are linked to cognitive deficits, a core feature of psychosis. Retrospective analyses demonstrate that substantial functional decline precedes the onset of psychosis. Recent investigations reveal that individuals at clinical-high-risk (CHR) for psychosis show impairments in social relationships, work/school functioning and daily living skills. CHR youth also demonstrate a pattern of impairment across a range of cognitive domains, including social cognition, which is qualitatively similar to that of individuals with schizophrenia. While many studies have sought to elucidate predictors of clinical deterioration, specifically the development of schizophrenia, in such CHR samples, few have investigated factors relevant to psychosocial outcome. This review integrates recent findings regarding cognitive and social-cognitive predictors of outcome in CHR individuals, and proposes potential directions for future research that will contribute to targeted interventions and improved outcome for at-risk youth
    corecore