
J
H
E
P
0
5
(
2
0
1
2
)
0
2
0

Published for SISSA by Springer

Received: March 10, 2012

Accepted: April 12, 2012

Published: May 7, 2012

A twistor description of six-dimensional N = (1, 1)

super Yang-Mills theory
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1 Introduction and results

The twistor description of solutions to chiral field equations in six dimensions goes back to

the work of Hughston [1]. For recent works in this direction, see also [2, 3] and references

therein. A corresponding twistor description of solutions to non-chiral field equations in six

dimensions, such as the equations of motion of Yang-Mills theory with maximal N = (1, 1)

supersymmetry, has only been developed partially [4–6].

The purpose of this letter is to give a complete twistor description of the maximally

or N = (1, 1) supersymmetric Yang-Mills (MSYM) equations in six dimensions with an

emphasis on the underlying geometries.1 It is known that these equations can be encoded

in constraint equations for a connection on superspace [11], which in turn correspond to

the integrability condition of this connection along super null-lines [4, 12]. We start by

describing a twistor correspondence for null-lines in six-dimensional space-time in some

detail. We then present the corresponding supersymmetric extension for maximal N =

(1, 1) supersymmetry. The resulting twistor space, denoted by L9|8, turns out to be a rank-

5|8 holomorphic supervector bundle over the four-dimensional Graßmannian G2,4. Next,

we derive a Penrose-Ward transform to establish a one-to-one correspondence between

equivalence classes of certain holomorphic vector bundles over L9|8 and gauge equivalence

classes of solutions to the equations of motion of six-dimensional MSYM theory. We end by

demonstrating how our constructions reduce to those appearing in the twistorial description

of MSYM theory in four dimensions [13–15].

Throughout this letter, we shall be working in the complex setting. Concretely, our

six-dimensional space-time is a copy of C6. If desired, however, reality conditions can be

imposed at any point of our constructions, cf. [2, 3].

1Notice that twistor methods have recently been applied in the description of scattering amplitudes in

this theory, see e.g. [7–10]. Our way of describing ambitwistor space might prove useful in this context.

– 1 –



J
H
E
P
0
5
(
2
0
1
2
)
0
2
0

2 Ambitwistor space L9|8 of N = (1, 1) superspace

In this section, we shall construct an ambidextrous twistor space (or ambitwistor space for

short) L9|8 of six-dimensional N = (1, 1) superspace. This twistor space is very similar

in spirit to the ambitwistor space of four-dimensional N = 3 superspace [13–15]: while

the latter parametrises super null-lines in four dimensions, L9|8 parametrises certain super

null-lines in six dimensions. We shall first describe the body L9 of the supermanifold L9|8

in detail, before we come to the supersymmetric extension. Our notation and conventions

are close to those of [2].

2.1 Construction of the body L9 of L9|8

Outline of the construction. As usual in twistor geometry, we would like to establish a

double fibration in which a correspondence space is simultaneously fibred over both twistor

space and complexified flat space-time C6. The correspondence space in such a twistor

fibration is a direct product of two manifolds.2 The first factor in this product is space-

time itself. The second factor is the moduli space of linear subspaces of space-time that we

wish to describe with the twistor correspondence, restricted to those through the origin.

Note that this makes the correspondence space the space of such linear subspaces with

a given base point. Different base points may describe the same subspace, and modding

out the dependence on equivalent base points, we obtain twistor space. In this letter, we

are interested in light-rays or null-lines in six dimensions. We shall see below that the

space of null-lines through the origin is given by the four-dimensional Graßmannian G2,4,

which is the space of two-planes in C4. The correspondence space, which we shall denote

by F 10, is therefore ten-dimensional and we have F 10 ∼= C6 × G2,4. Modding out the

dependence on equivalent base points amounts to quotenting the correspondence space by

an (integrable) rank-one distribution known as a twistor distribution. This yields a nine-

dimensional complex manifold which we denote by L9. Altogether, we have the following

double fibration:

L9 M6

F 10

π1 π2�
�✠

❅
❅❘

(2.1)

Here, the projection π1 is the quotient map by the distribution and π2 is the trivial projec-

tion. In the following, we shall discuss this double fibration, and in particular the structure

of the space L9, in more detail.

Null-lines in six dimensions. For simplicity, we shall work in spinor notation onM6 ∼=

C6, that is, we identify the tangent bundle TM6 with the antisymmetric tensor product

S ∧ S of the rank-four bundle of anti-chiral spinors S over M6. Correspondingly, we shall

use local coordinates xAB = −xBA with A,B, . . . = 1, . . . , 4 and take the (flat) metric

gAB,CD := 1
2εABCD, where εABCD is the Levi-Civita symbol in four dimensions.

A null-vector λAB in M6 satisfies the equation

1

2
εABCDλ

ABλCD = 0 . (2.2)

2If we are considering a compactified space-time, this direct product has to be compactified appropriately.
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Null-lines are then obtained from null-vectors via the identification λAB ∼ ̺λAB with

̺ ∈ C∗ := C \ {0}. The resulting equivalences classes describe points on the Graßmannian

G2,4, the homogeneous coordinates λAB are called Plücker coordinates, and (2.2) is called

the Plücker relation. The space G2,4 features prominently in four-dimensional twistor

correspondences, and a detailed account can be found, e.g., in [16]. In the following, we

merely recall a few facts necessary for our discussion.

Plücker coordinates provide an embedding of G2,4 into P5 via the quadric (2.2) with

the λAB being the six homogeneous coordinates on P5. Furthermore, as a coset space, the

Graßmannian G2,4 is given by

G2,4
∼=

SL(4,C)

SL(2,C)× ˜SL(2,C)
, (2.3)

where SL(2,C) × ˜SL(2,C) is the little group of a null vector in C6. The relation (2.2)

implies that the Plücker coordinates factorise according to

λAB =
1

2
εABCDλCaλDb ε

ab , (2.4)

where a, b = 1, 2 and εab is the invariant tensor for SL(2,C) with εacε
cb = δba. We therefore

have homogeneous coordinates (λAa) ∈ Mat4×2(C) and a coset description

G2,4
∼=

Mat4×2(C)

SL(2,C)×C∗
. (2.5)

Every plane λ in C4 has a natural dual µ, which is spanned by a pair of chiral spinors

µAȧ for ȧ, ḃ, . . . = 1, 2 with λAaµ
Aȧ = 0. The µAȧ represent homogeneous coordinates on a

dual Graßmannian G̃2,4 and they define a set of dual Plücker coordinates µAB according to

µAB =
1

2
εABCDµ

CċµDḋε
ċḋ
. (2.6)

The indices ȧ, ḃ, . . . = 1, 2 are to be understood as indices of the subgroup ˜SL(2,C) of the

little group and ε
ȧḃ

is the invariant tensor of ˜SL(2,C) with εȧċε
ċḃ = δḃȧ. Furthermore, the

two Graßmannians G2,4 and G̃2,4 can be identified via

λAB =
1

2
εABCDµCD ⇐⇒

1

2
εABCDλCaλDb ε

ab = µAȧµBḃε
ȧḃ
. (2.7)

The above equality, like all equalities in the following involving homogeneous coordinates,

is to be understood as an equality of equivalence classes.

Double fibration. So far, we have seen that the correspondence space F 10 is topologi-

cally C6×G2,4 and it is trivially fibred over space-time. We may coordinatise F 10 by either

(xAB, λAa) or (x
AB, λAB). To mod out the dependence of the null-lines on equivalent base

points, we quotient the correspondence space by the rank-one twistor distribution that is

generated by the vector field

V := λAB ∂

∂xAB
=

1

2
εABCDλCaλDb ε

ab ∂

∂xAB
. (2.8)

– 3 –
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The resulting space is a nine-dimensional complex manifold L9. Note that by construction,

the twistor space L9 is a rank-five holomorphic vector bundle over G2,4. Let us now give a

few more details about the geometry of L9.

To this end, consider the dual tautological bundle3 T∨ over G2,4. This rank-two holo-

morphic vector bundle is generated by its global sections. We can parametrise the latter

by moduli rA ∈ C4 ∼= S according to va = rAλAa, where S is the anti-chiral spin bundle

over space-time. This allows us to write down the following short exact sequence:

0 −→ E −→ C4 ⊗ T∨
κ : vAa 7→vA

(a
λAb)

−−−−−−−−−−→ ⊙2T∨ −→ 0 . (2.9)

Notice that κ has rank three such that E is a rank-five holomorphic vector bundle, and its

sections obey

vA(aλAb) = 0 . (2.10)

The short exact sequence (2.9) induces a long exact sequence of cohomology groups and

since all higher cohomology groups of T∨ and ⊙2T∨ vanish, we conclude thatH0(G2,4, E) ∼=

C6 and Hq(G2,4, E) = 0 for q ≥ 1. Global holomorphic sections of E are of the form

vAa = pABλBa with pAB ∈ ∧2S ∼= C6, and E is generated by these sections.

In fact, we can identify E with the twistor space L9 provided we identify the moduli

pAB with the space-time coordinates xAB: the projection π1 : F 10 → L9 is given by

π1 : (x
AB, λAa) 7→ (vAa , λAa) with

vAa = xABλBa , (2.11)

and the vector fields (2.8) generating the twistor distribution indeed annihilate the vAa . We

shall refer to the relation (2.11) as the incidence relation. This relation implies a geometric

twistor correspondence: points (v, λ) in L9 correspond to null-lines ℓ(v,λ) = π2(π
−1
1 (v, λ)) in

space-time given by xAB = xAB
0 +τλAB, where xAB

0 is a particular solution to the incidence

relation (2.11) and τ ∈ C. Vice versa, points x in space-time correspond to submanifolds

x̂ = π1(π
−1
2 (x)) →֒ L9 bi-holomorphic to the Graßmannian G2,4. Note that the above

null-lines are the null-lines obtained by intersecting two three-planes which are totally null

(so-called α-planes) [18]. Note also that we have just derived twistor space from space-time.

Inversely, one can derive space-time from twistor space using Kodaira’s theorem of relative

deformation theory: because of H1(G2,4, L
9) = 0, there are no obstructions to relative

deformations of G2,4 inside L9. Thus, we have a family of such deformations whose moduli

space H0(G2,4, L
9) can indeed be identified with space-time C6.

Other descriptions. In addition to using G2,4, we may also use the dual Graßmannian

G̃2,4 with homogeneous coordinates µAȧ (or Plücker coordinates µAB). Equipping (dual)

space-time M̃6 with coordinates yAB, we can associate a correspondence space F̃ 10 with

coordinates (yAB, µ
Aȧ) and introduce a twistor distribution generated by

Ṽ := µAB
∂

∂yAB

=
1

2
εABCDµ

CċµDḋε
ċḋ

∂

∂yAB

. (2.12)

3For more details on Graßmannians and bundles over them, see e.g. [17].
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Altogether, we have a dual double fibration

L̃9 M̃6

F̃ 10

π̃1 π̃2�
�✠

❅
❅❘

(2.13)

where π̃2 is the trivial projection and π̃1 : F̃ 10 → L̃9 is given by π̃1 : (yAB, µ
Aȧ) 7→

(wȧ
A, µ

Aȧ) with w
(ȧ
A µ

Aḃ) = 0 and wȧ
A = yABµ

Bȧ. This incidence relation yields an analogous

geometric twistor correspondence to the one above: points in L̃9 correspond to null-lines

in M̃6 and points in M̃6 correspond to embedding of G̃2,4 in L̃9. Geometrically, the null-

lines just described arise from intersecting two dual three-planes which are totally null

(so-called β-planes) [18]. Note that also L̃9 can be described by a short exact sequence of

the form (2.9).

The manifolds L9 and L̃9 yield a description of null-lines in terms of chiral spinors λAa

and anti-chiral spinors µAa, respectively. To obtain an ambidextrous description, that is, a

description involving both λAa and µAa simultaneously, we identify G2,4 and G̃2,4 via (2.7)

and write Ĝ2,4 and introduce L̂9 →֒ L9 × L̃9 as the zero-locus

(

vAa v
B
b ε

ab −
1

2
εABCDwȧ

Cw
ḃ
Dεȧḃ

)

mod λAB = 0 . (2.14)

Because of (2.14), global holomorphic sections are of the form

vAa = xABλBa and wȧ
A =

1

2
εABCDx

CDµBȧ , (2.15)

and therefore L̂9 is a rank-five holomorphic vector bundle over Ĝ2,4. Altogether, we have

a double fibration

L̂9 M6

F̂ 10

π1 π2�
�✠

❅
❅❘

(2.16)

with the same space-time manifold M6 as in (2.1) and

π1 : (xAB, {λAa, µ
Aȧ}) 7→ ({vAa , w

ȧ
A}, {λAa, µ

Aȧ}) (2.17)

is given by (2.15).

Double fibrations in Plücker coordinates. In order to extend the above discussion

to the supersymmetric setting with manifest maximal R-symmetry, we shall find it more

convenient to work directly with Plücker coordinates. The advantage of these coordinates

is that one can easily switch between chiral and anti-chiral descriptions by virtue of (2.7).

The results of [5, 6] seem to suggest that a description using the homogeneous coordinates

λAa and µAȧ and having the full R-symmetry for N = (1, 1) supersymmetry manifest at

the same time is not possible. Note, however, that in principle we can always substitute

the Plücker coordinates by the homogeneous coordinates.

– 5 –
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Recall that the Plücker coordinates define an embedding i : G2,4 →֒P
5 as the

quadric (2.2). The bundle detT∨ can be identified with i∗OP5(1) [17], and global sec-

tions of this bundle are given by v = pABλAB, p
AB ∈ C6, and λAB = 1

2εABCDλ
CD. This

bundle appears in the short exact sequence analogue to (2.9) involving Plücker coordinates,

0 −→ E −→ C
16 ⊗ detT∨

κ : vAB 7→(vABλBC , vA
(B

λC)A)
−−−−−−−−−−−−−−−−−→ E′ −→ 0 , (2.18)

where κ has rank4 11 and therefore E has rank five. In more detail, the bundle C16⊗detT∨

is generated by its global sections vAB and we can write vAB = pAB
CDλCD. The eleven linear

equations vABλ
BC = 0 and vA(BλC)A = 0 in the fibre coordinates reduces the rank-16 bundle

to a rank-five bundle E. In Plücker coordinates, global holomorphic sections of E are of

the form vAB = pACλCB with pAB ∈ ∧2S ∼= C6.

As before, identifying L9 with E, we can write the projection π1 in the double fibra-

tion (2.1) as

π1 : (x
AB, λAB) 7→ (vBA , λ

AB) (2.19a)

with an incidence relation of the form

vAB = xACλCB . (2.19b)

In a similar manner, we may repeat this analysis for L̃9 and L̂9.

2.2 Supersymmetric extension

Let us now come to the N = (1, 1) supersymmetric extension of the twistor space L9.

We shall first construct twistor spaces for chiral and anti-chiral super null-lines, before

extending these spaces to the twistor space of N = (1, 1) super null-lines. We shall use

Plücker coordinates on all the Graßmannians.

Twistor space for chiral super null-lines. Let Π be the Graßmann parity changing

operator. We start from N = (1, 0) superspace M6|8 ∼= C6|8 := C6 ⊕ ΠC8, which we

describe by Graßmann even (bosonic) coordinates xAB ∈ ∧2S ∼= C6 and Graßmann odd

(fermionic) coordinates θmA ∈ C2 ⊗ΠS. Here, the index m = 1, 2 is an index of SL(2,C),

the chiral subgroup of the R-symmetry group5 Spin(4,C) ∼= SL(2,C)×SL(2,C). On M6|8,

we introduce the vector fields

PAB :=
∂

∂xAB
and DmA :=

∂

∂θmA
+ εmnθ

nC ∂

∂xAC
, (2.20)

which satisfy the relation

{DmA, DnB} = 2εmnPAB . (2.21)

Chiral super null-lines are linear 1|4-dimensional subspaces ℓ →֒ M6|8. The moduli space

of such linear superspaces through the origin is still G2,4 so that the correspondence space

4To analyse the rank of such maps, it is helpful to consider them over a convenient point on the base

manifold G2,4, e.g. λ12 6= 0 = λ13 = . . . = λ34.
5not to be confused with the little group SL(2,C)× ˜SL(2,C)

– 6 –
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is F 10|8 ∼= C6|8 ×G2,4. To obtain a twistor space, we have to mod out the dependence on

equivalent base points. Here, this amounts to quotienting F 10|8 by a twistor distribution

generated by the vector fields

V := λABPAB and V A
m := λABDmB . (2.22)

For each λAB ∈ G2,4, we have four independent equations λABV
B
m = 0 and hence the

twistor distribution is of rank-1|4. Moreover, it is integrable since {V A
m , V

B
n } = εmnλ

ABV

while [V, V A
m ] = 0. Therefore, we have a foliation of F 10|8 by 9|8-dimensional complex

supermanifolds L9|4. By construction, L9|4 is a rank-5|4 holomorphic supervector bundle

over G2,4, which we describe as a subbundle of C16|8 ⊗ detT∨:

0 −→ L9|4 −→ C
16|8 ⊗ detT∨ κ

−→ E′ −→ 0 . (2.23)

Using coordinates (vAB, ϑ
m
A ) in the fibres of C16|8⊗detT∨ and the usual Plücker coordinates

λAB on the base, the map κ is implicitly given by the relations

vACλ
BC = 0 , vC(AλB)C −

1

2
ϑmAϑ

n
Bεmn = 0 , and ϑmBλ

BA = 0 . (2.24)

We can define a projection π1 : (x
AB, θmA, λAB) 7→ (vAB, ϑ

m
A , λ

AB) with

vAB =

(

xAC −
1

2
θmAθnCεmn

)

λCB and ϑmA = θmBλBA , (2.25)

and the vector fields (2.22) generating the twistor distribution indeed annihilate vAB and

ϑmA . Equations (2.25) represent a chiral super extension of the incidence relation (2.19b).

Because of the projection given in (2.25) and the trivial projection π2 : C
6|8 ×G2,4 →

C6|8, we have the double fibration

L9|4 M6|8

F 10|8

π1 π2�
�✠

❅
❅❘

(2.26)

The geometric twistor correspondence here is between points on L9|4 and chiral super null-

lines in M6|8 as well as between points on M6|8 and holomorphic embeddings of G2,4 into

L9|4. Explicitly, for any fixed point (vAB, ϑ
m
A , λ

AB) ∈ L9|4, the incidence relation (2.25)

yields a (1|4-dimensional) chiral super null-line

xAB = xAB
0 + τλAB + τmC λ

C[Aθ
nB]
0 εmn and θmA = θmA

0 + τmB λ
BA , (2.27)

where (xAB
0 , θmA

0 ) represent a particular solution to the incidence relation while τ and τmA
constitute one free bosonic parameter and four fermionic parameters (note that the matrix

λAB is of rank two, so only four out of the initial eight fermionic parameters enter).

Twistor space for anti-chiral super null-lines. A twistor space for anti-chiral super

null-lines is constructed analogously. Here, we start from M̃6|8 ∼= C6|8, with bosonic

coordinates yAB and fermionic coordinates θṁA , ṁ = 1, 2. The vector fields generating

supertranslations read as

P̃AB :=
∂

∂yAB

and DA
ṁ :=

∂

∂θṁA
+ εṁṅθ

ṅ
C

∂

∂yAC

, (2.28)

– 7 –
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and they satisfy the relation

{DA
ṁ, D

B
ṅ } = 2εṁṅP̃

AB . (2.29)

The correspondence space is given by F̃ 10|8 ∼= C6|8×G2,4, and to mod out the dependence

on equivalent base points, we have to quotient F̃ 10|8 by the vector fields

V := µABP̃
AB and VṁA := µABD

B
ṁ . (2.30)

The resulting vector bundle L̃9|4 can be regarded as a subbundle of C16|8 ⊗ det T̃∨ over

G̃2,4, which we coordinatise by (wB
A , ϑ

ṁA) in the fibres and the Plücker coordinates µAB

on the base. The relations satisfied by the fibre coordinates are

wC
AµBC = 0 , w

(A
C µB)C −

1

2
ϑṁAϑṅBεṁṅ = 0 , and ϑṁBµBA = 0 , (2.31)

and we have a double fibration

L̃9|4 M̃6|8

F̃ 10|8

π1 π2�
�✠

❅
❅❘

(2.32)

Here, the projection π1 : (yAB, θ
ṁ
A , µAB) 7→ (wA

B, ϑ
ṁA, µAB) reads as

wA
B =

(

yBC −
1

2
θṁB θ

ṅ
Cεṁṅ

)

µCA and ϑṁA = θṁBµ
BA . (2.33)

This incidence relation yields again a geometric twistor correspondence between points in

L̃9|4 and (1|4-dimensional) anti-chiral super null-lines in M̃6|4 as well as points in M̃6|4 and

submanifolds in L̃9|4 bi-holomorphic to G̃2,4.

Ambitwistor space. Let us now come to the discussion of full N = (1, 1) supersymme-

try. In particular, consider N = (1, 1) superspaceM6|16 ∼= C6|16 equipped with coordinates

(xAB, θmA, θṁA ). On this space, we have both the vector fields (2.20) and (2.28) with the

identification ∂
∂xAB = 1

2εABCD
∂

∂yCD
. They generate the N = (1, 1) supersymmetry algebra

in six dimensions,

{DmA, DnB} = 2εmnPAB , {DA
ṁ, D

B
ṅ } = 2εṁṅP

AB , {DmA, D
B
ṅ } = 0 , (2.34)

where PAB = 1
2ε

ABCDPCD. Note that here, the metric appears explicitly.

The correspondence space F 10|16 is then topologically C6|16 × G2,4 and coordinatised

by (xAB, θmA, θṁA , λ
AB). On F 10|16, we introduce a rank-1|8 distribution generated by the

vector fields

V := λABPAB = λABP
AB , V A

m := λABDmB , and VṁA := λABD
B
ṁ . (2.35)

This distribution is integrable, with the non-vanishing Lie brackets given by {V A
m , V

B
n } =

λABεmnV and {VṁA, VṅB} = εṁṅλABV . The quotient of F 10|16 by this distribution is the

ambitwistor space L9|8. It is a rank-5|8 supervector bundle over G2,4 and its body is L9.

– 8 –
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We describe L9|8 as a subbundle of C16|16 ⊗ detT∨ with fibre coordinates (vAB, ϑ
m
A , ϑ

Aṁ)

and the map κ implicitly given by its kernel:

vACλ
BC +

1

2
ϑṁAϑṅBεṁṅ = 0 , vC(AλB)C −

1

2
ϑmAϑ

n
Bεmn = 0 ,

λABϑmB = 0 , λABϑ
ṁB = 0 .

(2.36)

Note that κ has indeed rank 11|8, and we we have constructed a double fibration

L9|8 M6|16

F 10|16

π1 π2�
�✠

❅
❅❘

(2.37)

As before, the projection π2 is the trivial projection, while π1 : (xAB, θAm, θ
ṁ
A , λ

AB) 7→

(vAB, ϑ
m
A , ϑ

Aṁ, λAB) reads as

vAB =

(

xAC −
1

2
θmAθnCεmn

)

λCB +
1

2
θṁB θ

ṅ
Cεṁṅλ

CA ,

ϑmA = θBmλBA , and ϑAṁ = θṁBλ
BA ,

(2.38)

which describe global holomorphic sections of the bundle L9|8 → G2,4.

The geometric twistor correspondence induced by the incidence relation (2.38) is bet-

ween points on L9|8 and super null-lines in M6|16 as well as between points on M6|16 and

holomorphic embeddings of G2,4 into L9|8. Explicitly, for a fixed point (v, ϑ, λ) ∈ L9|8, the

above incidence relations determine a (1|8-dimensional) super null-line ℓ(v,ϑ,λ) →֒M6|16 by

xAB = xAB
0 + τλAB + τmC λ

C[Aθ
nB]
0 εmn +

1

2
εABCDτ ṁEλE[Cθ0

ṅ
D]εṁṅ ,

θmA = θmA
0 + τmB λ

BA , and θṁA = θ0
ṁ
A + τ ṁBλBA ,

(2.39)

where (xAB
0 , θmA

0 , θ0
ṁ
A ) represent a particular solution to the incidence relation while τ and

(τmA , τ
ṁA) constitute one free bosonic parameter and eight fermionic parameters.

3 Twistor construction of the MSYM equations in six dimensions

Constraint equations. We now come to the description of classical solutions to the

equations of motion of MSYM theory on M6 by means of holomorphic data on the am-

bitwistor space L9|8. The key fact here is that these equations are equivalent to certain

constraint equations for a connection on the superspace M6|16 [11] and furthermore, that

these constraint equations can in turn be interpreted as integrability conditions along

certain null-lines [4, 12]. Concretely, the equations of motion of MSYM theory in six

dimensions are equivalent to the following set of constraint equations [11]:

{∇mA,∇nB} = 2εmn∇AB ,

{∇mA,∇
B
ṅ } −

1

4
δAB{∇mC ,∇

C
ṅ } = 0 ,

{∇A
ṁ,∇

B
ṅ } = εṁṅε

ABCD∇CD = 2εṁṅ∇
AB .

(3.1)
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Here, the covariant derivatives are given in terms of a gauge potential with components

AAB, AmA and AA
ṁ as

∇AB := ∂AB +AAB , ∇mA := DmA +AmA , and ∇A
ṁ := DA

ṁ +AA
ṁ , (3.2)

where the derivatives ∂AB, DmA, andD
A
ṁ were defined in (2.20) and (2.28). The component

fields of MSYM theory appear as component fields in the superfield expansion of the gauge

potential (AAB, AmA, A
A
ṁ), cf. [11]. As observed in [4, 12], the constraint equations (3.1)

can be understood as integrability conditions of an auxiliary linear system. In the notation

of [12], it reads as

ξAB∇ABψ = 0 , ξAB∇mBψ = 0 , and ξAB∇
B
ṁψ = 0 , (3.3)

where the spectral parameter ξAB is some six-vector that is null and therefore describes a

point on G2,4. Below, we shall see how this system arises from a Penrose-Ward transform.

Penrose-Ward transform. In a general Penrose-Ward transform, one starts from an

element f of a cohomology group on a twistor space, which is the base of a correspondence

space that is simultaneously fibred over a space-time. To perform the transform, one pulls

f back to the correspondence space and pushes it down to space-time. Here, we start from

a rank-r vector bundle E over L9|8, i.e. an element of the first Čech cohomology group

H1(L9|8,GL(r)), and transform it to a solution of the MSYM equations on C6.

More explicitly, choose an open Stein covering Û = {Ûa} of L9|8 and let f = {fab} on

Ûa ∩ Ûb be the transition functions of E . We shall assume that E becomes holomorphically

trivial on any x̂ = π1(π
−1
2 (x)) →֒ L9|8. Note that the leaves of the fibration π1 in the

double fibration (2.37) are topologically trivial, and therefore the cover Û induces a cover

U′ = {U ′
a} with U ′

a = π−1
1 (Ua) on correspondence space F 10|16. The pull-back bundle

E ′ := π∗1E can thus be described by transition functions f ′ab, which are pull-backs of the

transition functions fab: f
′
ab = π∗1fab. Since we assumed that E is holomorphically trivial

on any x̂ = π1(π
−1
2 (x)) →֒ L9|8, the bundle E ′ is holomorphically trivial on all of F 10|16.

Therefore, we have a holomorphic splitting of f ′ab according to

f ′ab = (h′a)
−1h′b , (3.4)

where the h′a are holomorphic functions on U ′
a taking values in GL(r,C).

By definition of the pull-back, the f ′ab must be constant along the leaves of the fibration

π1 : F
10|16 → L9|8. Hence, they are annihilated by the vector fields (2.35), which implies

h′a V (h′a)
−1 = h′b V (h′b)

−1 ,

h′a V
A
m (h′a)

−1 = h′b V
A
m (h′b)

−1 ,

h′a VṁA (h′a)
−1 = h′b VṁA (h′b)

−1 .

(3.5)

This allows us to introduce a globally defined relative differential one-form with components

A|Ua := h′a V (h′a)
−1 =: λABAAB ,

AA
m|Ua := h′a V

A
m (h′a)

−1 =: λABAmB ,

AṁA|Ua := h′a VṁA (h′a)
−1 =: λABA

B
ṁ .

(3.6)
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Here, the components AAB, AmA, and AA
ṁ take values in gl(r,C) and depend only on

space-time. The equations (3.5) may thus be re-written as

λAB∇ABh
′
a = 0 , λAB∇mBh

′
a = 0 , and λAB∇

B
ṁh

′
a = 0 , (3.7)

which is equivalent to (3.3). From the rank-r holomorphic vector bundle E , we thus con-

structed a gauge potential with components AAB, AmA, and A
A
ṁ encoding a solution to the

equations of motion of N = (1, 1) SYM theory in six dimensions with gauge group GL(r,C).

Requiring det E to be trivial amounts to reducing the gauge group GL(r,C) to SL(r,C).

Moreover, appropriate reality condition may now be imposed to discuss the MSYM equa-

tions on Minkowski space-time and with gauge group SU(r), see [2, 3] for details on various

reality conditions.

Note that the Penrose transform is a map between equivalence classes of holomorphic

vector bundles over L9|8 becoming trivial on any x̂ ∼= G2,4 →֒L9|8 and gauge equivalence

classes of solutions encoded in the gauge potential (AAB, AmA, A
A
ṁ). Moreover, this map

establishes a one-to-one correspondence between these equivalence classes.

Reduction to 4d. To close, let us briefly comment on how our twistor correspondence

and Penrose-Ward transform reduce to those of MSYM theory in four dimensions. Recall

that the space of super null-lines in N = 4 superspace M4|16 ∼= C4|16 through the origin

is given by P1 × P1, and thus the correspondence space is F 6|16 ∼= C6|16 × P1 × P1. To

obtain twistor space, one has to factor by an integrable rank-1|8 distribution, which yields

a rank-3|8 vector bundle L5|8 over P1×P1. This bundle is a quadric in the space P
3|4
◦ ×P

3|4
◦

with P
3|4
◦

∼= C2|4 ⊗OP1(1). The corresponding double fibration reads as

L5|8 M4|16

F 6|16

π3 π4�
�✠

❅
❅❘

(3.8)

Explicitly, the reduction can be performed by splitting the spinor indices A,B, . . . of

SL(4,C) into spinor indices (α, α̇), (β, β̇), . . . of SL(2,C)× ˜SL(2,C). The superspace C6|16

with coordinates (xAB, θmA, θṁA ) is dimensionally reduced along the x12- and x34-directions

to the superspace C4|16 with coordinates (xαα̇, θiα, θα̇i ). To reduce G2,4 to P1 × P1, we

make the same reduction along Plücker coordinates λ12 and λ34. The remaining Plücker

coordinates λαα̇ can be factorised into the product of two sets (να, ν̃α̇) of homogeneous

coordinates on P1 ×P1: λαα̇ = ναν̃α̇. By applying the analogous reductions to the vector

fields of the twistor distribution, one obtains the twistor distribution determining π3. This

completes the reduction of the twistor correspondence. The Penrose-Ward transform now

reduces in principle trivially, up to a technical issue: it is well-known that integrability along

1|8-dimensional null-lines in C4|16 yields the equations of MSYM theory in four dimensions

up to an additional algebraic condition [13–15]. To circumvent this problems, one can

reduce the manifest R-symmetry group in the formulation from SL(4,C) to SL(3,C) and

thus study integrability along 1|6-dimensional null-lines in C4|12. This yields the N = 3

SYM equations in four dimensions, which are equivalent to the MSYM equations. If we

dimensionally reduce the constraint equations (3.1) of six-dimensional MSYM theory, we
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obtain both the constraint equations for four-dimensional MSYM theory as well as the

algebraic condition.
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