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Abstract  

Mononuclear silver and mercury complexes bearing bis-N-heterocyclic carbene (NHC) ligands 

with linear coordination modes have been prepared and structurally characterised. The complexes 

form metallocyclic structures that display rigid solution behaviour. A larger metallocycle of the 

form [L2Ag2]
2+  [where L = para-bis(N-methylimidazolylidene)xylylene] has been isolated from 

the reaction of para-xylylene-bis(N-methylimidazolium) chloride and Ag2O. Reaction of silver- 

and mercury-NHC complexes with Pd(NCCH3)2Cl2 affords palladium-NHC complexes via NHC-

transfer reactions, the mercury case being only the second example of a NHC-transfer reaction 

using a mercury-NHC complex. 
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Introduction 

N-Heterocyclic carbene (NHC) complexes of silver have become common-place 

in the organometallic literature. The interest in Ag-NHC complexes is largely due 

to their ease of synthesis (from azolium salts and Ag2O) and their ability to serve 

as useful precursors to other NHC-metal complexes by NHC-transfer reactions 

[1]. In recent years NHC-silver complexes have also been studied for possible 

antimicrobial and anti-cancer properties [2,3].  

 Wanzlick and Schönherr reported the synthesis of a mercury NHC 

complex via the reaction of an imidazolium salt with mercury(II) acetate in 1968 

[4]. Despite the fact that this complex was one of the earliest examples of an 

NHC-metal complex, NHC-mercury complexes have received little attention 

compared to NHC-silver complexes, and applications of mercury carbene 

complexes have not been widely explored. We recently reported the use of NHC-

mercury complexes for redox-transmetallation chemistry, where the reaction of a 

NHC-mercury(II) complex with a palladium(0) source afforded an NHC-

palladium(II) complex [5]. Redox-transmetallation using mercury complexes is a 

well established route in organometallic synthesis outside of NHC chemistry [6]. 

 We, and others, have an interest in xylyl-linked NHCs and their metal 

complexes, particularly systems where the NHCs form part of a cyclophane 

structure [5,7-18]. Cyclophane NHCs (comprising two NHC groups linked by two 

xylyl groups) provide a fascinating range of binding modes for metals, ranging 

from cis-chelating modes (e.g., 1) and trans-spanning chelating modes (e.g., 2, 3) 

through to dinuclear modes involving two mono-NHC-bound metals (e.g., 4) and 

dinuclear modes involving two bis(NHC)-bound metals (e.g., 5, 6). Metal 

complexes of cyclophane NHC ligands display interesting properties, including 

high stability compared to other complexes of unidentate and chelating NHCs and 

interesting catalytic properties (Pd-NHC complexes) [19] and anti-mitochondrial 

and luminescent properties (Au-NHC complexes) [20]. Compared to the 

cyclophane bis(NHC)s, bis(NHC) ligands containing only one xylyl linker (non-

cyclophane structures) provide additional conformational flexibility that can 

permit additional metal-coordination modes (e.g. 7) [21]. 
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 Silver complexes derived from non-cyclic xylyl-linked bis(NHC) ligands 

have been reported (e.g. 8, 9) [22-24]. Lutidinediyl analogues of the meta-xylyl 

linked structures have also been reported (10) [21,25,26]. In general metal 

complexes with para-xylyl linked bis(NHC) ligands are rare, though some 

interesting structures have been characterised in the solid-state (e.g. 11) [27-29]. 

 

N N

N N
Ag Ag

Br

Br

11

NN
N N

R R
ClAgAgCl

NNN NR' R'

AgXXAg

R R

R

R = H, Me

N
NNN NR' R'

AgXXAg

8

9

10

 

 



5 

 

Here we report the synthesis and characterisation of silver and mercury complexes 

with NHC ligands 12 and 13, derived from meta- and para-xylyl linked bis-

imidazolium cations. We also report the transmetallation (carbene-transfer) 

reactions of silver and mercury complexes to form a palladium complex. 
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Experimental Section 

General experimental 

Nuclear magnetic resonance spectra were recorded using Bruker Avance 500 

(500.13 MHz for 1H and 125.77 MHz for 13C) and Bruker ARX300 (300.14 MHz 

for 1H and 75.48 MHz for 13C) spectrometers at ambient temperature. 1H and 13C 

chemical shifts were referenced to solvent resonances. Mass spectra were obtained 

by Dr A. Reeder using a VG Autospec Mass Spectrometer via electrospray 

ionisation (low resolution). Microanalyses were performed by the Microanalytical 

Laboratory at the Research School of Chemistry, Australian National University, 

Canberra.  

Synthesis 

PdCl2(NCCH3)2 was prepared by the method of Wimmer et al. [30]. 1,3-

Di(bromomethyl)-2,4,6-trimethylbenzene was prepared by the method of van der 

Made and van der Made [31]. 
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Synthesis of the para-xylyl bis(imidazolium) salts 13H2·2Cl and 13H2·2PF6 

N-Methylimidazole (3.0 g, 17.1 mmol) was added to a stirred solution of ,'-

dichloro-p-xylene (9.0 g, 51.4 mmol) in dioxane (150 mL). The mixture was 

heated at 100 °C for 24 h under nitrogen. The product precipitated from solution 

as a light yellow solid, which was collected and washed with diethyl ether. 

Recrystallisation from a mixture of ethanol and diethyl ether yielded the product 

as yellow crystals (4.7 g) Yield 81%; 1H NMR (300.1 MHz, d6-DMSO):  3.86 

(6H, s, 2 x CH3), 5.47 (4H, br s, Wh/2 = 2 Hz, 2 x CH2), 7.50 (4H, br s, Wh/2 2 Hz, 

4 x Ar CH), 7.74 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H5), 7.86 (2H, d, 3JH,H = 2 

Hz, 2 x imidazolium H4) and 9.49 (2H, s, 2 x imidazolium H2); 13C NMR (75.5 

MHz, d6-DMSO):  35.9 (NCH3), 51.3 (CH2), 122.4 (imidazolium C5), 124.1 

(imidazolium C4), 129.1 (Ar CH), 135.6 (imidazolium C2) and 136.9 (Ar C); 

Anal. Calc. for C16H20N4Cl2·3H2O: C, 48.86; H, 6.36; N, 14.24. Found: C, 48.74; 

H, 6.36; N, 14.07%.  

13H2·2Cl was converted into its hexafluorophosphate salt (13H2·2PF6) by a salt 

metathesis reaction using 13H2·2Cl and KPF6 in methanol and was obtained as 

white crystalline solid, in 71% yield after recrystallisation from hot water. 

Crystals suitable for X-ray diffraction studies were grown from slow evaporation 

of a concentrated solution of the imidazolium salt in acetonitrile at 4 °C. 1H NMR 

(500.1 MHz, d6-DMSO):  3.84 (6H, s, 2 x CH3), 5.41 (4H, br s, Wh/2 2 Hz, 4 x 

CH2), 7.45 (4H, br s, Wh/2 2 Hz, 4 x Ar CH), 7.70 (2H, d, 3JH,H = 2 Hz, 2 x 

imidazolium H5), 7.75 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H4) and 9.23 (2H, s, 

2 x imidazolium H2); 13C NMR (125.8 MHz, d6-DMSO):  35.9 (CH3), 51.3 

(CH2), 122.2 (imidazolium C5), 124.0 (imidazolium C4), 128.9 (Ar CH), 136.7 

(imidazolium C2) and 135.4 (Ar C); Anal. Calc. for C16H20N4P2F12: C, 34.42; H, 

3.61; N, 10.04. Found: C, 34.29; H, 3.53; N, 9.92%. The tetrafluoroborate salt 

13H2·2BF4 was obtained by a similar procedure. 

Synthesis of the meta-mesitylene bis(imidazolium) salt 12H2·2PF6 

A solution of 1,3-di(bromomethyl)-2,4,6-trimethylbenzene (1 g, 3.3 mmol) and 1-

methylimidazole (0.84 g, 10 mmol) in 1,4-dioxane (13 mL) was heated at 100 °C, 

under nitrogen, for 24 h. The mixture was allowed to cool to room temperature 

and the precipitate was collected, washed with diethyl ether (5 mL) and dried over 

P2O5 to afford 12H2·2Br as a white powder (1.4 g, 90%). The bromide salt 
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12H2·2Br was converted to its hexafluorophosphate salt by a metathesis reaction 

using 12H2·2Br and KPF6 in methanol and was obtained as white crystalline solid, 

in 85% yield after recrystallisation from hot water. Crystals suitable for X-ray 

diffraction studies were grown from slow evaporation of a concentrated solution 

of the imidazolium salt in acetonitrile at 4 °C. 1H NMR (500.1 MHz, d6-DMSO): 

 2.21 (3H, s, 1 x C2-CH3), 2.30 (6H, s, 1 x C4-CH3/1 x C6-CH3), 3.79 (6H, s, 2 x 

N-CH3), 5.43 (4H, s, 2 x CH2), 7.18 (1H, s, 1 x Ar H5), 7.60 (2H, d, 3JH,H = 2 Hz, 

2 x imidazolium H5), 7.71 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H4) and 8.91 

(2H, s, 2 x imidazolium H2); 13C NMR (125.8 MHz, d6-DMSO):  15.6 (C2-

CH3), 19.1 (C4-CH3/C6-CH3), 35.9 (NCH3), 47.3 (CH2), 122.2 (imidazolium C5'), 

123.7 (imidazolium C4'), 131.2 (Ar CH), 136.0 (imidazolium C2'), 128.4 (Ar C), 

139.0 (Ar C) and 139.7 (Ar C); Anal. Calc. for C16H20N4P2F12: C, 38.01; H, 4.37; 

N, 9.33. Found: C, 37.87; H, 4.09; N, 9.50%.   

Synthesis of the dinuclear silver complex 17·2Cl 

Ag2O (85 mg, 367 mmol) was added to a solution of 13H2·2Cl (105 mg, 310 

mmol) in methanol (15 mL). The mixture was heated at 60 °C for 2 h in darkness. 

A clear solution with some black suspension was obtained. The mixture was 

filtered and the filtrate was evaporated to dryness to give a white powder. 

Recrystallisation of the powder from minimum amount of hot methanol yielded 

white crystals (90 mg). Yield 52%. 1H NMR (500.1 MHz, d6-DMSO):  3.83 

(12H, s, 4 x NCH3), 5.29 (8H, br s, Wh/2 2 Hz, 4 x CH2), 7.14 (8H, br s, Wh/2 2 Hz, 

8 x ArH), 7.46 (4H, d, 3JH,H = 2 Hz, 4 x imidazolium H5) and 7.53 (4H, d, 3JH,H = 

2 Hz, 4 x imidazolium H4); 13C NMR (125.8 MHz, d6-DMSO):  38.2 (NCH3), 

53.5 (CH2), 122.2 (imidazolium C5'), 123.5 (imidazolium C4'), 127.7 (Ar CH), 

137.2 (Ar C) and 180.1 (br C-Ag). Anal. Calc. for C32H36Ag2N8Cl2·1.5CH3OH· 

2H2O: C, 44.54; H, 5.13; N, 12.40. Found: C, 44.70; H, 4.79; N, 12.19%. 

Synthesis of the dinuclear silver complex 17·2PF6 

Ag2O (23 mg, 100 mmol) was added to a solution of 13H2·2PF6 (50 mg, 90 mmol) 

in acetonitrile (10 mL). The mixture was heated at 60 °C for 2 hr in darkness. The 

mixture was filtered and the filtrate was concentrated in vacuo. The white resiude 

was washed with dichloromethane (2 x 2 mL) and was then recrystallised from a 

mixture of acetonitrile and diethyl ether to afford a white powder (36 mg). Yield 
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77 % 1H NMR (500.1 MHz, d6-DMSO):  3.83 (12H, s, 4 x NCH3), 5.29 (8H, br 

s, Wh/2 2 Hz, 4 xCH2), 7.13 (8H, br s, Wh/2 2 Hz, 8 x ArH), 7.46 (4H, d, 3JH,H = 2 

Hz, 4 x imidazolium H4) and 7.53 (4H, d, 3JH,H = 2 Hz, 4 x imidazolium H5); 13C 

NMR (125.8 MHz, d6-DMSO):  38.1 (NCH3), 53.5 (CH2), 122.2 (imidazolium 

C5'), 123.5 (imidazolium C4'), 127.6 (Ar CH), 137.1 (Ar C) and 180.2 (d, 1JC-109Ag 

= 210 Hz, 1JC-107Ag = 180 Hz, Ag-C); ES-MS m/z 891 (55% relative intensity), 

892 (30%), 893 (100%), 894 (40%), 895 (55%), 896 (15%) [M-PF6]
+  [17·PF6]

+;  

Anal. Calc. for C32H36N8Ag2P2F12: C, 37.02; H, 3.49; N, 10.79. Found: C, 36.77; 

H, 3.32; N, 10.71%. 

Synthesis of the silver complex 15·PF6 

Ag2O (30 mg, 129 mmol) was added to a solution of 12H2·2Br (25 mg, 104 

mmol) in methanol (20 mL). The mixture was heated at 50 °C for 2 h in darkness. 

The mixture was filtered and the filtrate was concentrated in vacuo to afford 15·Br 

as a white solid. The white solid residue was dissolved in water (10 mL) and the 

resulting solution was filtered into an aqueous solution of KPF6 (38 mg, 206 

mmol, 5 mL). A grey precipitate formed, which was collected and dried under 

reduced pressure (44 mg). Yield 76%; Analytically pure samples were obtained 

by recrystallisation of the complex from acetonitrile. 1H NMR (500.1 MHz, d6-

acetone):  2.17 (6H, s, 2 x C4/C6-CH3), 2.73 (3H, s, 1 x C2-CH3), 3.85 (6H, s, 2 

x NCH3), 5.48 (2H, A part of AB multiplet, 2JH,H = 14 Hz, 2 x benzylic CHH), 

5.57 (2H, B part of AB multiplet, 2JH,H = 14 Hz, 2 x benzylic CHH), 7.12 (1H, s, 1 

x Ar H5), 7.42 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H5) and 7.64 (2H, d, 3JH,H = 

2 Hz, 2 x imidazolium H4); 13C NMR (125.8 MHz, d6-DMSO):  17.0 (C4/C6-

CH3), 19.1 (C2-CH3), 39.4 (NCH3), 47.9 (CH2), 122.1 (imidazolium-C5'), 123.7 

(imidazolium-C4'), 131.7 (Ar CH), 131.5 (Ar C), 136.4 (Ar C), 138.0 (Ar C) and 

178.7 (d, Ag-C, 1JC-109Ag = 212 Hz, 1JC-107Ag = 188 Hz); Anal. Calc. for 

C19H24N4AgPF6·0.5H2O: C, 40.02; H, 4.42; N, 9.82. Found: C, 40.25; H, 4.36; N, 

9.90%. 

Synthesis of the mercury complex 16·2PF6 

Hg(OAc)2 (35 mg, 109 mmol) was added to a solution of 12H2·2PF6 (50 mg, 100 

mmol) in acetonitrile (40 mL). The mixture was heated at reflux for 3 days. A 

clear colourless solution resulted. The solution was concentrated in vacuo. The 
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solid residue was washed with water (2 x 5 mL) and recrystallised from 

acetonitrile to afford colourless crystals (45 mg). Yield 55%; Analytically pure 

samples and crystals suitable for X-ray diffraction studies were obtained by the 

slow evaporation of a solution of the salt in acetonitrile/water at room 

temperature; 1H NMR (500.1 MHz, d3-acetonitrile):  2.16 (6H, s, 2 x C4/C6-

CH3), 2.53 (3H, s, 1 x C2-CH3), 3.79 (6H, s, 2 x NCH3), 5.58 (2H, A part of AB 

pattern, 2JH,H = 15 Hz, 2 x benzylic CHH), 5.62 (2H, B part of AB pattern, 2JH,H = 

15 Hz, 2 x benzylic CHH), 7.34 (1H, s, 1 x Ar H5), 7.42 (2H, m, 3JH,H = 2 Hz, 2 x 

imidazolium H5) and 7.68 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H4); 13C NMR 

(125.8 MHz, d6-acetonitrile):  16.7 (C4/C6-CH3), 17.0 (C2-CH3), 39.9 (NCH3), 

49.6 (CH2), 126.4 (imidazolium-C5'), 126.6 (imidazolium-C4'), 132.0 (Ar CH), 

135.4 (Ar C), 137.4 (Ar C), 142.4 (Ar C) and 173.3 (C-Hg); Anal. Calc. for 

C19H24N4HgP2F12: C, 28.56; H, 3.03; N, 7.01. Found: C, 28.74; H, 3.09; N, 

7.13%. 

Synthesis of a palladium complex via NHC-transfer reactions 

Method A (via a silver complex): Ag2O (28 mg, 120 mmol) was added to a 

solution of 13H2·2Cl (32 mg, 94 mmol) in methanol (10 mL). The mixture was 

heated at 60 °C for 2 h in darkness. A clear solution with some black suspension 

was obtained. The mixture was filtered and the filtrate was evaporated to dryness 

to give a white powder. The white powder was suspended in acetonitrile (10 mL) 

and PdCl2(NCCH3)2 (49 mg, 188 mmol) was added. The resulting mixture was 

stirred at 60 °C for 24 h, which resulted in a yellow solution with a dark 

precipitate. The mixture was filtered and the filtrate was dried in vacuo to leave a 

yellow solid. The solid was washed with a minimum amount of dichloromethane 

and then recrystallised from acetonitrile, collected and dried in vacuo to afford a 

yellow powder (38 mg). Yield: 59%. Crystals suitable for X-ray diffraction 

studies were grown from slow evaporation of a concentrated solution of the 

complex in acetonitrile at 4 °C. 

Method B (via a mercury complex): Hg(OAc)2 (40 mg, 125 mmol) was added to a 

solution of 13H2·2Cl (40 mg, 118 mmol) in methanol (50 mL). The mixture was 

heated at reflux for 24 h resulting in a clear colourless solution. The solution was 

concentrated in vacuo to afford a white solid. The white solid was washed with 

water (2 x 6 mL), diethyl ether (2 x 6 mL) and dried under vacuum (64 mg). [1H 
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NMR (300.1 MHz, d6-DMSO):  3.89 (12H, s, 4 x NCH3), 5.48 (8H, br s, 4 x 

CH2), 7.46 (8H, s, 8 x ArH), 7.68 (4H, d, 3JH,H = 2 Hz, 4 x imidazolium H5) and 

7.73 (4H, d, 3JH,H = 2 Hz, 4 x imidazolium H4)] A portion of the solid (30 mg, 38 

mmol) was suspended in acetonitrile (10 mL). A solution of PdCl2(NCCH3)2 (20 

mg, 77 mmol) in acetonitrile (10 mL) was added and the mixture was heated at 60 

°C. After 30 min, a precipitate began to form. The reaction was continued until all 

the original white solid dissolved (18 h). A yellow solution with grey precipitate 

resulted. The solution was filtered and the filtrate was concentrated in vacuo to 

give a yellow solid, which was then washed with water (2 x 5 mL) and dried (23 

mg) Yield 91%. 
1H NMR (500.1 MHz, d3-acetonitrile):  4.01 (6H, s, 2 x CH3), 5.67 (4H, br s, 2 x 

CH2), 6.94 (2H, d, 3JH,H = 2 Hz, 2 x imidazolium H5), 7.07 (2H, d, 3JH,H = 2 Hz, 2 

x imidazolium H4) and 7.50 (4H, s, 4 x ArH); 13C NMR (125.8 MHz, d3-

acetonitrile):  39.0 (N-CH3), 55.0 (CH2), 123.6 (imidazolium-C5'), 125.9 

(imidazolium-C4'), 130.6 (Ar CH), 137.9 (Ar C) and 147.3 (C-Pd); Anal. Calc. for 

C16H18N4Pd2Cl4: C, 30.95; H, 2.92; N, 9.02. Found: C, 31.01; H, 3.22; N, 8.85%. 

 

Structure determinations  

Full spheres of CCD area-detector diffractometer data were measured 

(monochromatic Mo K radiation,  = 0.71073 Å, -scans) yielding Nt(otal) 

reflections, these merging to N unique (Rint cited) after 'empirical'/multiscan 

'absorption correction', these being used in the full matrix least squares 

refinements on F2 (anisotropic displacement parameter refinement for the non-

hydrogen atoms, hydrogen atom treatment following a riding model; reflection 

weights: (2(  Fo
2) + (aP)2) (+ bP))–1 (P = (  Fo

2 +   2Fc
2/3)); No with Fo > 4(Fo) were 

considered 'observed'.  Pertinent details are given below in the Figures, the latter 

showing 50% probability amplitude displacement ellipsoids for the non-hydrogen 

atoms, hydrogen atoms having arbitrary radii of 0.1 Å.  Neutral atom complex 

scattering factors were employed within the SHELXL 97 program [32].  Full .cif 

depositions (excluding structure factor amplitudes) reside with the Cambridge 

Crystallographic Data Centre, CCDC 736772-736777, 737102. 
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Crystal/refinement data 

13H2·2PF6  C16H20F12N4P2, M = 558.3.  Monoclinic, space group P21/c 

    (C2h
5 , No.14), a = 7.1194(8), b = 12.1150(10), c = 13.055(2) Å,  = 105.019(2)º, 

V = 1088 Å3 (T ca. 153 K).  Dc (Z = 2) = 1.705 g cm–3.  Mo = 0.32 mm–1; 

specimen: 0.43 x 0.31 x 0.25 mm; 'T'min/max = 0.82.  2max = 66º; Nt = 14578, N = 

3980 (Rint = 0.022), No = 3382.  R1 = 0.041, wR2 = 0.123 (a = 0.067, b = 0.326), S 

= 1.05.  |max| = 0.45 e Å–3. 

 

13H2·2BF4  C16H20B2F8N4, M = 442.0.  Monoclinic, space group P21/c, a = 

4.9639(8), b = 12.913(2), c = 15.401(3) Å,  = 92.932(3)º, V = 985.9 Å
3 (T ca. 153 

K).  Dc (Z = 2) = 1.489 g cm–3.  Mo = 0.14 mm–1; specimen: 0.48 x 0.15 x 0.10 

mm; 'T'min/max = 0.80.  2max = 50º; Nt = 9070, N = 1730 (Rint = 0.036), No = 1454.  

R1 = 0.058, wR2 = 0.148 (a = 0.068, b = 1.03), S = 1.05.  |max| = 0.46 e Å–3. 

 

17·2NO3·2CH3OH  C34H44Ag2N10O8, M = 936.5.  Triclinic, space group P1, a = 

9.363(2), b = 9.460(2), c = 21.779(4) Å,  = 94.308(4),  = 91.836(3),  = 

93.606(3)º, V = 1919 Å3 (T ca. 170 K).  Dc (Z = 2) = 1.621 g cm–3.  Mo = 1.08 

mm–1; specimen: 0.49 x 0.15 x 0.12 mm; 'T'min/max = 0.85.  2max = 58º; Nt = 

15090, N = 8356 (Rint = 0.047), No = 6607.  R1 = 0.050, wR2 = 0.116 (a = 0.040, b 

= 5.58); S = 1.08.  |max| = 1.17 e Å–3. 

 

18·2CH3CN  C24H30Cl4N8Pd2, M = 785.2.  Triclinic, space group P1    (Ci
1, No. 2), 

a = 7.2833(6), b = 7.8832(7), c = 14.8010(10) Å,  = 80.196(2),  = 81.669(2),  

= 65.593(2)º, V = 759.9 Å
3 (T ca. 170 K).  Dc (Z = 1) = 1.564 g cm–3.  Mo = 1.56 

mm–1; specimen: 0.48 x 0.20 x 0.08 mm; 'T'min/max = 0.81.  2max = 67º; Nt = 

10432, N = 5365 (Rint = 0.026), No = 4826.  R1 = 0.029, wR2 = 0.074 (a = 0.021, b 

= 0.71), S = 1.10.  |max| = 0.86 e Å–3. 

 

12H2·2PF6  C19H26F12N4P2, M = 600.4.  Monoclinic, space group P21/n 

    (C2h
5 , No.14; variant), a = 8.1345(5), b = 26.145(2), c = 11.9508(5) Å,  = 

108.052(5)º, V = 2417 Å3 (T ca. 100 K).  Dc (Z = 4) = 1.650 g cm–3.  Mo = 0.29 

mm–1; specimen: 0.32 x 0.20 x 0.07 mm; 'T'min/max = 0.81.  2max = 68º; Nt = 
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30072, N = 9496 (Rint = 0.033), No = 4980.  R1 = 0.041, wR2 = 0.106 (a = 0.058), 

S = 0.87.  |max| = 0.45 e Å–3. 

 

15·HCO3·H2O  C20H27AgN4O4, M = 495.3.  Triclinic, space group P1, a = 

8.3300(10), b = 10.8710(10), c = 11.9050(10) Å,  = 72.493(3),  = 82.538(3),  

= 77.284(3)º, V = 1001 Å3 (T ca. 150 K).  Dc (Z = 2) = 1.644 g cm–3.  Mo = 1.04 

mm–1; specimen: 0.22 x 0.15 x 0.10 mm; 'T'min/max = 0.74.  2max = 75º; Nt = 

19861, N = 10153 (Rint = 0.025), No = 8618.  R1 = 0.039, wR2 = 0.13 (b = 3.7), S 

= 1.28.  |max| = 1.93 e Å–3. 

Variata.  Hydrogen atoms, located in associated with residues modelled as 

bicarbonate and water, were refined in (x, y, z, Uiso). 

 

16·2PF6  C19H24F12HgN4P2, M = 799.0.  Monoclinic, space group P21 

    (C2
2 , No. 4), a = 8.5280(6), b = 12.5400(9), c = 11.7590(8) Å,  = 96.925(2)º, V = 

1248 Å3 (T ca. 153 K).  Dc (Z = 2) = 2.126 g cm–3.  Mo = 6.4 mm–1; specimen: 

0.38 x 0.37 x 0.33 mm; 'T'min/max = 0.58.  2max = 75º; Nt = 24232, N = 12340 (Rint 

= 0.038), No = 10236.  R1 = 0.036, wR2 = 0.077 (a = 0.035), S = 1.05.  |max| = 

3.25 e Å–3.  xabs = –0.018(4). 

 

Results and discussion 

Synthesis, reactivity and solution behaviour 

Imidazolium salts 12H2·2Br, 12H2·2PF6, 13H2·2Cl, and 13H2·2PF6 

 The meta- and para-xylyl linked bis(imidazolium) salts 12H2·2Br and 

13H2·2Cl were prepared by procedures based on the method used by Dias and Jin 

for the synthesis of a tri-imidazolium analogue of 12H2
2+ [33]. The reaction of 

,'-dichloro-p-xylene with two equivalents of N-methylimidazole in refluxing 

dioxane for 24 h afforded 13H2·2Cl, after recrystallisation from ethanol-diethyl 

ether. In a similar fashion, 12H2·2Br was prepared by the reaction of 1,3-

di(bromomethyl)-2,4,6-trimethylbenzene with two equivalents of N-

methylimidazole in refluxing dioxane. The bis-imidazolium salts 12H2·2Br and 
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13H2·2Cl are very soluble in polar solvents such as ethanol, methanol, DMSO, 

DMF and water, but are insoluble in less polar solvents such as dichloromethane, 

acetone, acetonitrile and diethyl ether. The halide salts 12H2·2Br and 13H2·2Cl 

were converted to their hexafluorophosphate counterparts by salt metathesis in 

methanol using KPF6. The 1H and 13C NMR spectra for solutions of the 

imidazolium cations 12H2
2+ and 13H2

2+, as the halide and hexafluorophosphate 

salts, display the expected signals. 

 

N

N

N

N

N NN N
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N

N

N

N
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Complexes derived from the meta-linked di(imidazolium) cation 12H2  

 The reaction of 12H2·2Br with Ag2O in methanol afforded complex 15·Br 

(Scheme 1). The imidazolium salt 12H2·2Br reacts relatively quickly under these 

conditions to form the silver complex 15. This reactivity is substantial higher than 

that of the cyclophane analogue 14 [11], a result that may be a consequence of 

higher conformational mobility and/or accessibility of the imidazolium C2 

positions in 12H2
2+ vs. 14. Salt metathesis by the addition of an aqueous solution 

of 15·Br to an aqueous solution of KPF6 afforded 15·PF6 as a grey precipitate, 

which was isolated in an overall yield of 76%. The bromide salt 15·Br is freely 

soluble in highly polar solvents such as DMF, DMSO and water, while 15·PF6 is 
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poorly soluble in water but dissolves well in acetonitrile and acetone at room 

temperature.  

 13C NMR spectra of solutions of 15·PF6 in d6-DMSO display two doublets 

centred at ca.  179, due to the carbene carbons bound to the silver centre. The 

presence of 13C-109Ag and 13C-107Ag coupling of ca. 200 Hz in these signals is 

consistent with the absence of NHC-exchange processes at the Ag centre 

[1,11,34]. The 1H NMR spectra of solutions of 15·PF6 in d6-acetone display an 

AX pattern due to the benzylic methylene protons, indicating that 15 is 

conformationally rigid on the NMR time-scale at room temperature (i.e., that the 

mesitylene ring does not "flip", e.g., by a process involving the 2-methyl group 

passing through the metallocyclic ring). In d6-DMSO solutions prepared from 

15·PF6, 15 displayed excellent thermal stability, no decomposition being observed 

by 1H NMR when the solution was heated at 100 °C for 2 days. 

 

N N

NN
AgN N

N N

2Br

(i) Ag2O
    MeOH
    60 °C, 2 h

(ii) KPF6
     MeOH

+

15PF6

PF6

12H22Br  

Scheme 1 

 

 The mononuclear mercury complex 16 was obtained by the reaction of 

12H2·2PF6 with Hg(OAc)2 in acetonitrile at reflux for 3 days (Scheme 2). The salt 

16·2PF6 was obtained as colourless crystals in 55% yield after recrystallisation 

from a mixture of acetonitrile and water. The NMR spectra for solutions of 

16·2PF6 were similar to those of the silver analogue 15·PF6. The 1H NMR spectra 

of solutions of 16·2PF6 in d3-acetonitrile display an AB pattern due to the benzylic 

methylene protons, indicating some conformational rigidity in the structure. In the 
13C NMR spectra, for the same solution, a signal at ca.  173 is attributed to the 

carbene carbon bound to mercury, which is consistent with the literature [5]. 
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N N
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HgN N

N N

2PF6
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+

162PF612H22PF6

CH3CN

2PF6

 

Scheme 2 

 

Complexes derived from the para-linked di(imidazolium) cation 13H2  

 Reaction of 13H2·2Cl with an excess of Ag2O in methanol (Scheme 3) 

afforded the salt 17·2Cl in 52% yield after recrystallisation from hot methanol. 

The reaction also proceeds well in DMF or DMSO. The salt 17·2Cl is soluble in 

DMF, DMSO and ethanol, and sparingly soluble in methanol. The 

hexafluorophosphate salt 17·2PF6 was prepared similarly, by reacting 17·2PF6 

with Ag2O in acetonitrile, and was isolated in 77% yield. Removal of the 

associated AgPF6 by-product proved problematic. One procedure that can be used 

to isolate a hexafluorophosphate salt from a reaction mixture is the selective 

precipitation of the salt by addition of water (AgPF6 remains dissolved). This 

method could not be used here because on addition of water to the reaction 

mixture the material darkened immediately. However, careful washing of the 

crude reaction product with dichloromethane, followed by recrystallisation from 

acetonitrile/diethyl ether, afforded pure 17.2PF6.  

 The results of an electrospray ionisation mass spectrometry study were 

consistent with the dimeric structure [L2Ag2]
2+ for the cation 17. The study 

showed a molecular ion cluster with prominent peaks near 891 (55% relative 

intensity), 892 (30%), 893 (100%), 894 (40%), 895 (55%), and 896 (15%) amu, as 

expected for the [17·PF6]
+ ion pair (i.e., {[L2Ag2]PF6}

+). The 1H NMR spectra for 

solutions of 17·2PF6 in d6-DMSO indicate that the cation 17 exhibits some 

conformational flexibility in solution at ambient temperature. For example, the 1H 

NMR signal attributed to the benzylic protons appears as a singlet, which is 

consistent with a situation where the two protons on each benzylic carbon have 

their environments rendered chemically equivalent by conformational changes 

that are rapid on the NMR timescale. Similar to the situation for of 15·PF6, the 13C 

NMR spectra for solutions of 17·2PF6 in d6-DMSO displayed two doublets 



16 

centred near  180, attributed to the carbene carbons bound to 107Ag and 109Ag 

centres. For a solution of 17·2Cl in d6-DMSO, however, the 13C NMR spectrum 

displayed only one broad signal at ca.  180. The lack of any observed 13C-
107/109Ag coupling is common for silver complexes with halide counter anions, and 

has been attributed to halide-mediated Ag-NHC exchange processes [1,35].  

 It is interesting that the para-linked di(imidazolium) salt 13H2.2Cl reacted 

with Ag2O to form a dimeric structure [L2Ag2]
2+ (17), whereas 11 was isolated 

from  the reaction of Ag2O with a para-linked di(benzimidazolium) salt [29]. Two 

factors that might be responsible for the different courses of these reactions are the 

reaction solvents employed and the presence or absence of methyl substituents on 

the para-phenylene linker. In the reaction leading to 17, solvent was methanol, 

from which AgCl precipitates, leaving only one Ag+ per bis(NHC) ligand, 

whereas for the reaction leading to 11, the solvent was dichloromethane, from 

which silver halides are less likely to precipitate, leaving excess silver and 

bromide in solution to form the Ag2Br2 core in 11. Alternatively, the per-

methylation of the para-phenylene linker in 11 may serve to disfavour formation 

of a product of form [L2Ag2]
2+, with the methyl groups providing the extra steric 

encumbrance that destabilise the L2Ag2 macrocycle. 

 Similar to those of 15.PF6, solutions of 17.2PF6 in d6-DMSO displayed no 

decomposition (as observed by 1H NMR) when heated at 100 °C for two days.  

N N
N N

N N
N N

Ag Ag

172Cl

2

N

N

N

N 13H22Cl

2Cl

2Cl

Ag2O, MeOH 60 °C, 2h

 

Scheme 3 
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 Silver-NHC complexes provide a synthetic pathway to other NHC-metal 

complexes via transmetallation reactions [1]. Since examples of palladium 

complexes of para-xylyl-linked bis(NHC) ligands are rare [27], we have explored 

the use of 17·2Cl in transmetallation reactions. The silver complex 17·2Cl, 

prepared by the reaction of 13H2·2Cl with Ag2O in methanol, was treated with 

two equivalents of PdCl2(NCCH3)2 in acetonitrile at 60 °C. A precipitate, 

presumably AgCl, formed immediately. Filtration of the mixture, followed by 

drying of the filtrate under vacuum afforded a yellow powder. Results of 

elemental analysis of the bulk material were consistent with structures involving 

bridging chlorides, such as 19 (intermolecular chloride bridges) or 20 

(intramolecular chloride bridges). However, the 1H and 13C NMR spectra of 

solutions of the powder in d3-acetonitrile were consistent with formation of a 

solvated complex of structure 18. Disruption of the chloride bridging to afford a 

solvated complex 18 would occur on dissolution of either 19 or 20 in acetonitrile. 

While the reaction of 17·2Cl with PdCl2(NCCH3)2 was conducted in acetonitrile 

and thus might be expected to yield the solvated complex 18, the vacuum-drying 

step presumably resulted in the isolation of a non-solvated product. It has been 

shown previously that the acetonitrile ligand in complexes of the type trans-

(NHC)PdX2(NCCH3) is extremely labile, such that even washing the complex 

with diethyl ether can result in loss of the coordinated acetonitrile and formation 

of non-solvated bridging-halide complexes [36,37]. After the yellow powder was 

carefully recrystallised by very slow evaporation of an acetonitrile solution and 

isolated without any drying step, an X-ray study indicated that the crystals 

contained the solvated structure 18 (see below). 
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 We recently reported the first example of redox-transmetallation using a 

mercury-NHC complex [5]. In view of the apparently labile nature of mercury-

NHC complexes, we have explored their use in non-redox transmetallation 

("carbene-transfer") reactions. The reaction of 13H2·2Cl with Hg(OAc)2 in 

methanol at reflux for 24 hours afforded the mercury analogue of 17. The Hg 

complex was identified on the basis of the similarity of its 1H NMR spectrum with 

that of the Ag analog 17. The mercury complex was treated with two equivalents 

of PdCl2(NCCH3)2 in acetonitrile and heated at 60 °C. After 18 hours the reaction 

mixture consisted of a yellow solution and a grey precipitate (presumably HgCl2 

with traces of palladium black). The mixture was filtered and the yellow solution 

was evaporated to dryness under vacuum to leave a yellow powder. Solutions of 

this yellow powder in d3-acetonitrile gave 1H and 13C NMR spectra identical to 

those of the solvated complex 18 isolated from the silver transfer reaction.  

 We have found that both the silver and the mercury transmetallation 

experiments can be performed without the need to use inert-atmosphere 

conditions. The mercury transmetallation route proceeded as well as, if not better 

than, the silver transmetallation. The mercury complexes made from Hg(OAc)2 

proved easy to purify, and any excess Hg(OAc)2 or acetic acid was easily 
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removed by washing with water. Silver complexes, especially those made from 

the bis-imidazolium systems in this study darken easily if exposed to light and 

therefore need to be protected during synthesis and isolation. Mercury complexes 

do not need special experimental conditions and perhaps, in this respect, have an 

advantage over silver complexes. 

 

 

Structure determinations 

Cation 13H2
2+ has been defined in both bis-hexafluorophosphate and -

tetrafluoroborate salts. In both, one half of the formula unit comprises the 

asymmetric unit, i.e. one anion, devoid of crystallographic symmetry, and one half 

of the cation, the latter disposed about a crystallographic centre of symmetry in 

both cases.  Both structures are well-ordered.  The imidazole ring is twisted out of 

the plane of the central p-xylyl ring in each case (C3N2/C6 interplanar dihedral 

angles 77.75(5), 86.7(3)º respectively) (Fig. 1).  In both salts there are 

cation...anion H...F contacts; in the BF4 salt these are all ≥ 2.4 Å, but, in the PF6 

salt, contacts to the imidazole hydrogen atoms ortho to the xylyl attachment are 

2.24, 2.39 Å. 

 

 

Fig. 1 (Centrosymmetric) Cation 13H2
2+ in its hexafluorophosphate salt; the conformation in the 

tetrafluoroborate is similar. 
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 Although silver(I) complexes of 13 and 12 were obtained in bulk as 

chloride and hexafluorophosphate, and hexafluorophosphate respectively, as 

described above, the materials obtained were inappropriate for single crystal X-

ray studies; smaller quantities of other salts suitable for the X-ray work were 

obtained adventitiously in the course of variations on the described syntheses.  

With 13H2, a nitrate complex was obtained from methanol solution in ambience: 

 17·2NO3·2MeOH is an elegant structure, in which, although there is only 

one formula unit in the asymmetric unit of the structure, that is comprised of 

halves of independent dimers disposed pseudo-symmetrically about inversion 

centres in a triclinic cell (Fig. 2(a)).  The two independent cations are very similar, 

each comprising a pair of 17 units with their pendant groups oriented quasi-trans 

about a quasi-inversion centre at the centre of the xylyl ring except that the 

imidazole rings are oriented so that the carbene groups are directed to the same 

'side' of the ligand.  The pair of ligands may then be bridged by a pair of silver 

atoms to form a 22-membered (centrosymmetric) metallocycle (Fig. 2(b)(i)), the 

ring in projection through the xylyl centroids (or nearly so) having a 'Z' aspect 

(Fig. 2(b)(ii)).  Ag-C are 2.116,2.088;2.107,2.082(4) Å (units 1;2), with C-Ag-C 

172.8;175.4(2)º comparable to other silver-carbene distances, below and 

elsewhere [35]. C3N2/C6 interplanar dihedral angles are 73.8,75.2;81.0,77.0(2)º.  

Within the nitrate ions, N-O are 1.212,1.243(6),1.263(5);1.247(6),1.247,1.250(5) 

Å, with opposed O-N-O angles 121.3(5),121.4(4),117.3;120.8,119.3,119.9(5)º.  

The methanol C-O distances are 1.379(7);1.393(8) Å, the hydroxyl groups being 

hydrogen-bonded to the nitrate ions (H,O...O 1.96(6),2.800(7);2.11(7),2.864(7) 

Å). 
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Fig. 2 (a) Unit cell contents of 17·2NO3·2CH3OH projected down a; (b) Projections of cation 1 

(cation 2 is similar): (i) normal to, and (ii) through, the Ag2(xylyl centroid)2 plane. 

 

 As a ligand, 13 also forms a bis(carbene) complex with acetonitrile 

solvated palladium(II) chloride, shown to be 18·2CH3CN, the neutral complex 

molecule also a centrosymmetric species, with one half of the array comprising 

the asymmetric unit of the structure (Fig. 3); the C3N2/C6 interplanar dihedral 

angle is 81.4(1)º.  The pair of trans-Pd-Cl distances in the quasi-square-planar 

palladium environment are 2.2964,2.2998(6) Å, Cl-Pd-Cl 178.46(2)º.  Pd-

N(CH3CN) is 2.081(2) and Pd-C(carbene) 1.950(2) Å, N-Pd-C being 177.89(8)º,  



22 

N-Pd-Cl are 90.50,91.04(6) and C-Pd-Cl 88.92,89.55(6)º.  The Cl2PdNC array is 

essentially planar (2 293), the dihedral angle to the associated C3N2 plane being 

66.99(8)º.  Distances of the palladium atom to methyl and methylene hydrogen 

atoms to either side are 2.9 Å.  The solvating acetonitrile molecules have an 

association which presents the aspect of a proto-inclusion complex (Fig. 3), lying 

above and below the central p-xylyl ring and quasi-parallel to it and to the 

imidazole ring to one side.  Their closest contact, however, is from the nitrogen 

atom to methylene and imidazole hydrogen atoms of an adjacent complex (N...H, 

2.6 Å (x2)). 
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Fig. 3 Projections of 18·2CH3CN (a) through and (b) normal to, the central p-xylyl ring 
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 Cation 12H2
2+ has also been isolated as a bis(hexafluorophosphate) salt.  

Here, the imidazole pendants lie to the same side of the central ring, both inclined 

at similar angles (C3N2/C6 interplanar dihedrals: 84.82,79.58(5)º), so that the 

cation has quasi-m symmetry, (to which the imidazole methyl substituents do not 

conform), with a pair of ring hydrogen atoms, ortho to the pendants, directed 

'inwards'/towards each other, so as to 'chelate' one of the fluorine atoms of one of 

the anions (H...F 2.25, 2.3x Å), while one of the other ortho hydrogen atom 

contacts one of the fluorine atoms of the other anion (H...F 2.28 Å) (Fig. 4).  The 

'chelation' mode is consummated, with replacement of the pair of 'chelating' 

hydrogen atoms by a single metal atom in a bis(carbene) complex, in two 

crystallographically characterized derivatives of silver(I) and mercury(II): 

 15·HCO3·H2O.  Here all hydroxylic hydrogen atoms are confirmed by 

refinement in (x, y, z, Uiso) using good quality data, unambiguously establishing 

the nature of the complex, deposited from a solution of the bromide on standing in 

ambience.  The pair of imidazole rings now lie quasi-normal to the central ring 

(C3N2/C6 interplanar dihedrals: 89.7,88.9(1); C3N2/C3N2: 2.2(1)º), and almost 

mutually coplanar (Fig. 5(a)), Ag-C are 2.093,2.094(3) Å, C-Ag-C 178.3(1)º, 

similar to values recorded for other bis(carbene)silver(I) arrays elsewhere [35] and 

above.  The cation symmetry is quasi-m.  The anions and solvent molecules form 

a separate one-dimensional array, disposed about crystallographic centres of 

symmetry along b: ...OCO.OH(i)HO.OCO  (H O
i

H)2OCO.OH... (Fig. 5(b)).  

Within the bicarbonate anion, C-O(2,3) are 1.265,1.206(4) Å with O(2)-C-O(3) 

126.6(3)º; C-O(1)(H) is 1.356(4) Å, with O(1)-C-O(2,3) 116.8,116.6(3)º.  

O(3)...O(4,4') are 2.809(5), 2.871(4) Å, with H...O distances 1.98,2.03(3) Å.  

O(1)...O(2) are 2.610(3) with H(1)...O(2) 1.79(5) Å.  A similar cation disposition 

is found in: 

 16·2PF6 (Fig. 6).  Here the C3N2/C6 interplanar dihedral angles are 

80.0,77.6(2)º, the C3N2/C3N2 inclination here being greater (22.4(2)º), although 

M-C distances here are almost identical to those of the silver(I) complex (Hg-C 

2.078,2.086(4) Å; C-Hg-C 176.8(1)º); again Hg-C are similar to those recorded in 

other mercury/carbene arrays [5].  In this complex the two anions approach the 

mercury atom from either side of the Hgim2 'plane', Hg...F(11,12) being 

3.085,3.228(4), and Hg...F(21,22) 3.065,3.040(4) Å (Fig. 6(b)). 
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Fig. 4 The asymmetric unit of 12H2·2PF6, showing the H...F interactions, and the 'chelation' of 

one of the anions by the cation of quasi-m symmetry. 

 

 

 

Fig. 5 (a) The cation 15 in 15·HCO3·H2O. (b) The bicarbonate/water molecule polymeric strand. 

 



26 

 

 

 

Fig. 6 (a) The cation 16 in 16·2PF6. (b) Projection showing the approaches of the anions. 

 

 

 The structure of the cation 15 contrasts with structures such as 21 and 22 , which 

are also based on bis(NHC)s with meta-xylyl-type linking motifs [16,24,26].  

Different coordination modes may arise due to the presence of coordinating vs 

non-coordinating anions (21 was formed in the presence of chloride), solvent 

effects, etc. In the present case, however, internal steric hindrance between the 

mesityl C2 methyl substituent and the imidazolyl units may disfavour dinuclear 

binding motifs such as exemplified by 22 [26] and 23 [11]. In the latter, for 

example, the mesityl groups are distinctly distorted from planarity, with the C2 

methyl group pushed out of the arene plane away from the imidazolyl groups. The 

ligand 12 can be thought of as derived from the cyclophane ligand found in 23, 
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and the absence of the ortho-xylyl linker leaves 12 with conformational freedom 

to adopt the interesting trans-spanning chelating coordinating mode rather than a 

sterically disfavoured dinuclear structure.  
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