1,739 research outputs found

    The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements

    Get PDF
    Large diameter metal-on-metal bearings (MOM) are becoming increasingly popular, addressing the needs of young and more active patients. Clinical data has shown excellent short-to-mid-term results, though incidences of transient squeaking have been noted between implantation and up to 2 years post-operative. Geometric design features, such as clearance, have been significant in influencing the performance of the bearings. Sets of MOM bearings with different clearances were investigated in this study using a hip friction simulator to examine the influence of clearance on friction, lubrication and squeaking. The friction factor was found to be highest in the largest clearance bearings under all test conditions. The incidence of squeaking was also highest in the large clearance bearings, with all bearings in this group squeaking throughout the study. A very low incidence of squeaking was observed in the other two clearance groups. The measured lubricating film was found to be lowest in the large clearance bearings. This study suggests that increasing the bearing clearance results in reduced lubricant film thickness, increased friction and an increased incidence of squeaking

    Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity

    Get PDF
    Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines

    Oral health Inequalities in 0-17-year-old children referred for dental extractions under general anaesthesia in Wolverhampton, 2013-2017

    Get PDF
    This is an accepted manuscript of an article published by Dennis Barber in Community Dental Health on 20/04/2020, available online: 10.1922/CDH_00056Harper06 The accepted version of the publication may differ from the final published version.OBJECTIVE:Describe the inequalities in oral health in children treated in a hospital located in a deprived urban area in the UK. RESEARCH DESIGN:Case-note review of 1911 0-17-year-olds who underwent dental extractions under a general anaesthetic (DGA). MAIN OUTCOME MEASURES:Associations between Age, Ethnicity, Year-of-Treatment and Index of Multiple Deprivation (IMD) with the number of teeth extracted. Analysis used multilevel modelling assuming a Poisson distribution. RESULTS:Mean number of teeth extracted was higher in the youngest children treated aged 0-5 years (relative risk coefficient, (RR=exp(β)=1.39; 95% CI 1.24 to 1.56) compared to those aged 6-17 years and in 'Other Whites' (predominantly immigrants from Eastern Europe) (RR=exp(β)=1.34; 95% CI 1.25 to 1.43), 'South Asians' (RR=exp(β)=1.15; 95% CI 1.08 to 1.23) but fewer in the 'Black' ethnic group (RR=exp(β)=0.85; 95% CI 0.76 to 0.95). DGA increased during the study with more teeth extracted in 2015, 2016 and 2017 (RR=exp(β)=1.12, 95% CI 1.22, 1.25) and with a negative gradient in the rate of DGA's (per decile) in children from the most deprived to most affluent locations (RR=exp(β)=0.98; 95% CI 0.97 to 0.99). CONCLUSIONS:Significant oral health inequalities exist in children from a deprived urban area in the UK. A preventive approach to children's oral health is needed to reduce such inequalities, including public health and healthcare agencies to informing parents of children whose first language is not English about dental caries.Published versio

    Stochastic population growth in spatially heterogeneous environments

    Full text link
    Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. To understand the interactive effects of environmental stochasticity, spatial heterogeneity, and dispersal on population growth, we study the following model for population abundances in nn patches: the conditional law of Xt+dtX_{t+dt} given Xt=xX_t=x is such that when dtdt is small the conditional mean of Xt+dtiXtiX_{t+dt}^i-X_t^i is approximately [xiμi+j(xjDjixiDij)]dt[x^i\mu_i+\sum_j(x^j D_{ji}-x^i D_{ij})]dt, where XtiX_t^i and μi\mu_i are the abundance and per capita growth rate in the ii-th patch respectivly, and DijD_{ij} is the dispersal rate from the ii-th to the jj-th patch, and the conditional covariance of Xt+dtiXtiX_{t+dt}^i-X_t^i and Xt+dtjXtjX_{t+dt}^j-X_t^j is approximately xixjσijdtx^i x^j \sigma_{ij}dt. We show for such a spatially extended population that if St=(Xt1+...+Xtn)S_t=(X_t^1+...+X_t^n) is the total population abundance, then Yt=Xt/StY_t=X_t/S_t, the vector of patch proportions, converges in law to a random vector YY_\infty as tt\to\infty, and the stochastic growth rate limtt1logSt\lim_{t\to\infty}t^{-1}\log S_t equals the space-time average per-capita growth rate \sum_i\mu_i\E[Y_\infty^i] experienced by the population minus half of the space-time average temporal variation \E[\sum_{i,j}\sigma_{ij}Y_\infty^i Y_\infty^j] experienced by the population. We derive analytic results for the law of YY_\infty, find which choice of the dispersal mechanism DD produces an optimal stochastic growth rate for a freely dispersing population, and investigate the effect on the stochastic growth rate of constraints on dispersal rates. Our results provide fundamental insights into "ideal free" movement in the face of uncertainty, the persistence of coupled sink populations, the evolution of dispersal rates, and the single large or several small (SLOSS) debate in conservation biology.Comment: 47 pages, 4 figure

    Dental Occlusion in a Split Amazon Indigenous Population: Genetics Prevails over Environment

    Get PDF
    Background: Studies examining human and nonhuman primates have supported the hypothesis that the recent increase in the occurrence of misalignment of teeth and/or incorrect relation of dental arches, named dental malocclusion, is mainly attributed to the availability of a more processed diet and the reduced need for powerful masticatory action. For the first time on live human populations, genetic and tooth wear influences on occlusal variation were examined in a split indigenous population. The Arara-Iriri people are descendants of a single couple expelled from a larger village. In the resultant village, expansion occurred through the mating of close relatives, resulting in marked genetic cohesion with substantial genetic differences. Methodology/Principal Findings: Dental malocclusion, tooth wear and inbreeding coefficient were evaluated. The sample examined was composed of 176 individuals from both villages. Prevalence Ratio and descriptive differences in the outcomes frequency for each developmental stage of the dentition were considered. Statistical differences between the villages were examined using the chi-square test or Fisher’s exact statistic. Tooth wear and the inbreeding coefficient (F) between the villages was tested with Mann-Whitney statistics. All the statistics were performed using two-tailed distribution at p#0.05. The coefficient inbreeding (F) confirmed the frequent incestuous unions among the Arara-Iriri indigenous group. Despite the tooth wear similarities, we found a striking difference in occlusal patterns between the two Arara villages. In the original village, dental malocclusion was present in about one third of the population; whilst in the resultant village, the occurrence was almost doubled. Furthermore, the morphological characteristics of malocclusion were strongly different between the groups. Conclusions/Significance: Our findings downplay the widespread influence of tooth wear, a direct evidence of what an individual ate in the past, on occlusal variation of living human populations. They also suggest that genetics plays the most important role on dental malocclusion etiology

    Why do Particle Clouds Generate Electric Charges?

    Full text link
    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining

    Full text link
    [EN] Background: Public health in several countries is characterized by a shortage of professionals and a lack of economic resources. Monitoring and redesigning processes can foster the success of health care institutions, enabling them to provide a quality service while simultaneously reducing costs. Process mining, a discipline that extracts knowledge from information system data to analyze operational processes, affords an opportunity to understand health care processes. Objective: Health care processes are highly flexible and multidisciplinary, and health care professionals are able to coordinate in a variety of different ways to treat a diagnosis. The aim of this work was to understand whether the ways in which professionals coordinate their work affect the clinical outcome of patients. Methods: This paper proposes a method based on the use of process mining to identify patterns of collaboration between physician, nurse, and dietitian in the treatment of patients with type 2 diabetes mellitus and to compare these patterns with the clinical evolution of the patients within the context of primary care. Clustering is used as part of the preprocessing of data to manage the variability, and then process mining is used to identify patterns that may arise. Results: The method is applied in three primary health care centers in Santiago, Chile. A total of seven collaboration patterns were identified, which differed primarily in terms of the number of disciplines present, the participation intensity of each discipline, and the referrals between disciplines. The pattern in which the three disciplines participated in the most equitable and comprehensive manner had a lower proportion of highly decompensated patients compared with those patterns in which the three disciplines participated in an unbalanced manner. Conclusions: By discovering which collaboration patterns lead to improved outcomes, health care centers can promote the most successful patterns among their professionals so as to improve the treatment of patients. Process mining techniques are useful for discovering those collaborations patterns in flexible and unstructured health care processes.This paper was partially funded by the National Commission for Scientific and Technological Research, the Formation of Advanced Human Capital Program and the National Fund for Scientific and Technological Development (CONICYT-PCHA/Doctorado Nacional/2016-21161705 and CONICYT-FONDECYT/1150365; Chile). The authors would like to thank Ancora UC primary health care centers for their help with this research. The founding sponsors had no role in the design of the study in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.Conca, T.; Saint Pierre, C.; Herskovic, V.; Sepulveda, M.; Capurro, D.; Prieto, F.; Fernández Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. JOURNAL OF MEDICAL INTERNET RESEARCH. 20(4). https://doi.org/10.2196/jmir.8884S204Chen, C.-C., Tseng, C.-H., & Cheng, S.-H. (2013). Continuity of Care, Medication Adherence, and Health Care Outcomes Among Patients With Newly Diagnosed Type 2 Diabetes. Medical Care, 51(3), 231-237. doi:10.1097/mlr.0b013e31827da5b9International Diabetes FederationIDF20152018-03-19IDF Diabetes Atlas 7th Edition (2015) https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/13-diabetes-atlas-seventh-edition.htmlMinisterio de Salud de Chileminsal.cl20102018-03-23Encuesta Nacional de Salud ENS Chile 2009-2010 http://www.minsal.cl/estudios_encuestas_salud/Ministerio de Salud de Chileminsal.cl20102018-03-20Guía Clinica Diabetes Mellitus Tipo 2 http://www.minsal.cl/portal/url/item/72213ed52c3e23d1e04001011f011398.pdfSapunar Z., J. (2016). EPIDEMIOLOGÍA DE LA DIABETES MELLITUS EN CHILE. Revista Médica Clínica Las Condes, 27(2), 146-151. doi:10.1016/j.rmclc.2016.04.003World Health Organizationwho.int2018-03-20Global Report on Diabetes http://www.who.int/diabetes/global-report/en/Poblete, F., Glasinovic, A., Sapag, J., Barticevic, N., Arenas, A., & Padilla, O. (2015). Apoyo social y salud cardiovascular: adaptación de una escala de apoyo social en pacientes hipertensos y diabéticos en la atención primaria chilena. Atención Primaria, 47(8), 523-531. doi:10.1016/j.aprim.2014.10.010Tuligenga, R. H., Dugravot, A., Tabák, A. G., Elbaz, A., Brunner, E. J., Kivimäki, M., & Singh-Manoux, A. (2014). Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. The Lancet Diabetes & Endocrinology, 2(3), 228-235. doi:10.1016/s2213-8587(13)70192-xGamiochipi, M., Cruz, M., Kumate, J., & Wacher, N. H. (2016). Effect of an intensive metabolic control lifestyle intervention in type-2 diabetes patients. Patient Education and Counseling, 99(7), 1184-1189. doi:10.1016/j.pec.2016.01.017Wagner, E. H. (2001). Effect of Improved Glycemic Control on Health Care Costs and Utilization. JAMA, 285(2), 182. doi:10.1001/jama.285.2.182McDonald, J., Jayasuriya, R., & Harris, M. F. (2012). The influence of power dynamics and trust on multidisciplinary collaboration: a qualitative case study of type 2 diabetes mellitus. BMC Health Services Research, 12(1). doi:10.1186/1472-6963-12-63Gucciardi, E., Espin, S., Morganti, A., & Dorado, L. (2016). Exploring interprofessional collaboration during the integration of diabetes teams into primary care. BMC Family Practice, 17(1). doi:10.1186/s12875-016-0407-1Caron, F., Vanthienen, J., Vanhaecht, K., Limbergen, E. V., De Weerdt, J., & Baesens, B. (2014). Monitoring care processes in the gynecologic oncology department. Computers in Biology and Medicine, 44, 88-96. doi:10.1016/j.compbiomed.2013.10.015Rothman, A. A., & Wagner, E. H. (2003). Chronic Illness Management: What Is the Role of Primary Care? Annals of Internal Medicine, 138(3), 256. doi:10.7326/0003-4819-138-3-200302040-00034Organisation for Economic Co-operation and DevelopmentOECD20162018-03-20OECD Health Policy Overview: Health Policy in Chile http://www.oecd.org/els/health-systems/health-policy-in-your-country.htmRojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, 224-236. doi:10.1016/j.jbi.2016.04.007Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Mans, R. S., van der Aalst, W. M. P., & Vanwersch, R. J. B. (2015). Process Mining in Healthcare. SpringerBriefs in Business Process Management. doi:10.1007/978-3-319-16071-9Van der Aalst, W. M. P. (2011). Process Mining. doi:10.1007/978-3-642-19345-3Kim, E., Kim, S., Song, M., Kim, S., Yoo, D., Hwang, H., & Yoo, S. (2013). Discovery of Outpatient Care Process of a Tertiary University Hospital Using Process Mining. Healthcare Informatics Research, 19(1), 42. doi:10.4258/hir.2013.19.1.42Harper, P. R., Sayyad, M. G., de Senna, V., Shahani, A. K., Yajnik, C. S., & Shelgikar, K. M. (2003). A systems modelling approach for the prevention and treatment of diabetic retinopathy. European Journal of Operational Research, 150(1), 81-91. doi:10.1016/s0377-2217(02)00787-7Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Ferreira, D., Zacarias, M., Malheiros, M., & Ferreira, P. (2007). Approaching Process Mining with Sequence Clustering: Experiments and Findings. Business Process Management, 360-374. doi:10.1007/978-3-540-75183-0_26Cheong, L. H., Armour, C. L., & Bosnic-Anticevich, S. Z. (2013). Multidisciplinary collaboration in primary care: through the eyes of patients. Australian Journal of Primary Health, 19(3), 190. doi:10.1071/py12019Boyle, E., Saunders, R., & Drury, V. (2016). A qualitative study of patient experiences of Type 2 Diabetes care delivered comparatively by General Practice Nurses and Medical Practitioners. Journal of Clinical Nursing, 25(13-14), 1977-1986. doi:10.1111/jocn.13219UddinSHossainLEffects of Physician Collaboration Network on Hospital Outcomes2012Fifth Australasian Workshop on Health Informatics and Knowledge Management (HIKM 2012)2012Melbourne, AustraliaBorgermans, L., Goderis, G., Van Den Broeke, C., Verbeke, G., Carbonez, A., Ivanova, A., … Grol, R. (2009). Interdisciplinary diabetes care teams operating on the interface between primary and specialty care are associated with improved outcomes of care: findings from the Leuven Diabetes Project. BMC Health Services Research, 9(1). doi:10.1186/1472-6963-9-179Bosch, M., Dijkstra, R., Wensing, M., van der Weijden, T., & Grol, R. (2008). Organizational culture, team climate and diabetes care in small office-based practices. BMC Health Services Research, 8(1). doi:10.1186/1472-6963-8-180Counsell, S. R., Callahan, C. M., Clark, D. O., Tu, W., Buttar, A. B., Stump, T. E., & Ricketts, G. D. (2007). Geriatric Care Management for Low-Income Seniors. JAMA, 298(22), 2623. doi:10.1001/jama.298.22.2623Anderson, J. G. (2002). Evaluation in health informatics: social network analysis. Computers in Biology and Medicine, 32(3), 179-193. doi:10.1016/s0010-4825(02)00014-8Gray, J. E., Davis, D. A., Pursley, D. M., Smallcomb, J. E., Geva, A., & Chawla, N. V. (2010). Network Analysis of Team Structure in the Neonatal Intensive Care Unit. PEDIATRICS, 125(6), e1460-e1467. doi:10.1542/peds.2009-2621Mian, O., Koren, I., & Rukholm, E. (2012). Nurse practitioners in Ontario primary healthcare: Referral patterns and collaboration with other healthcare professionals. Journal of Interprofessional Care, 26(3), 232-239. doi:10.3109/13561820.2011.650300Crossley, N., Bellotti, E., Edwards, G., Everett, M. G., Koskinen, J., & Tranmer, M. (2015). Social Network Analysis for Ego-Nets. doi:10.4135/9781473911871Ministerio de Salud de Chile2018-03-20Fondo Nacional de Salud https://www.fonasa.cl/sites/fonasa/beneficiariosGoldstein, D. E., Little, R. R., Lorenz, R. A., Malone, J. I., Nathan, D., Peterson, C. M., & Sacks, D. B. (2004). Tests of Glycemia in Diabetes. Diabetes Care, 27(7), 1761-1773. doi:10.2337/diacare.27.7.1761Meduru, P., Helmer, D., Rajan, M., Tseng, C.-L., Pogach, L., & Sambamoorthi, U. (2007). Chronic Illness with Complexity: Implications for Performance Measurement of Optimal Glycemic Control. Journal of General Internal Medicine, 22(S3), 408-418. doi:10.1007/s11606-007-0310-5Vermeire, E., Hearnshaw, H., Van Royen, P., & Denekens, J. (2001). Patient adherence to treatment: three decades of research. A comprehensive review. Journal of Clinical Pharmacy and Therapeutics, 26(5), 331-342. doi:10.1046/j.1365-2710.2001.00363.xKarter, A. J., Parker, M. M., Moffet, H. H., Ahmed, A. T., Ferrara, A., Liu, J. Y., & Selby, J. V. (2004). Missed Appointments and Poor Glycemic Control. Medical Care, 42(2), 110-115. doi:10.1097/01.mlr.0000109023.64650.73World Health Organization20032018-03-20Adherence to long-term therapies: evidence for action http://www.who.int/chp/knowledge/publications/adherence_report/en/Toth, E. L., Majumdar, S. R., Guirguis, L. M., Lewanczuk, R. Z., Lee, T. K., & Johnson, J. A. (2003). Compliance with Clinical Practice Guidelines for Type 2 Diabetes in Rural Patients: Treatment Gaps and Opportunities for Improvement. Pharmacotherapy, 23(5), 659-665. doi:10.1592/phco.23.5.659.32203Melnikow, J., & Kiefe, C. (1994). Patient compliance and medical research. Journal of General Internal Medicine, 9(2), 96-105. doi:10.1007/bf02600211Fernandez-Llatas, C., Valdivieso, B., Traver, V., & Benedi, J. M. (2014). Using Process Mining for Automatic Support of Clinical Pathways Design. Data Mining in Clinical Medicine, 79-88. doi:10.1007/978-1-4939-1985-7_5Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Wishah, R. A., Al-Khawaldeh, O. A., & Albsoul, A. M. (2015). Impact of pharmaceutical care interventions on glycemic control and other health-related clinical outcomes in patients with type 2 diabetes: Randomized controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 271-276. doi:10.1016/j.dsx.2014.09.00

    Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation

    Get PDF
    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks
    corecore