35 research outputs found

    Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are large differences between the sexes at the genetic level; these differences include heterogametic sex chromosomes and/or differences in expression of genes between the sexes. In rainbow trout (<it>Oncorhynchus mykiss</it>) qRT-PCR studies have found significant differences in expression of several candidate sex determining genes. However, these genes represent a very small fraction of the genome and research in other species suggests there are large portions of the transcriptome that are differentially expressed between the sexes. These differences are especially noticeable once gonad differentiation and maturation has occurred, but less is known at earlier stages of development. Here we use data from a microarray and qRT-PCR to identify genes differentially expressed between the sexes at three time points in pre-hatch embryos, prior to the known timing of sexual differentiation in this species.</p> <p>Results</p> <p>The microarray study revealed 883 differentially expressed features between the sexes with roughly equal numbers of male and female upregulated features across time points. Most of the differentially expressed genes on the microarray were not related to sex function, suggesting large scale differences in gene expression between the sexes are present early in development. Candidate gene analysis revealed <it>sox9</it>, <it>DMRT1</it>, <it>Nr5a1 </it>and <it>wt1 </it>were upregulated in males at some time points and <it>foxl2</it>, <it>ovol1</it>, <it>fst </it>and <it>cyp19a1a </it>were upregulated in females at some time points.</p> <p>Conclusion</p> <p>This is the first study to identify sexual dimorphism in expression of the genome during embryogenesis in any fish and demonstrates that transcriptional differences are present before the completion of gonadogenesis.</p

    Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    Get PDF
    Versión del editor

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Extra-pair mating and evolution of cooperative neighbourhoods

    Get PDF
    A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans
    corecore