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Abstract

A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species.
Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary
modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus
from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation
towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to
safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical
observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair
mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding
sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for
offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal
benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or
neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these
new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including
humans.
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Introduction

Females of many socially monogamous species mate with extra-

pair males while leaving it to their social mate to provide paternal

care [1]. Paternity data exist for more than 200 species of birds,

and for 90% of them extra-pair paternity is common [1]. The

advantage of such extra-pair mating is obvious for males who may

sire additional offspring without the cost of care, but why do

females actively solicit extra-pair copulations [2,3,4]? After all, a

main expectation is that the social male will withdraw his parental

care if his share of paternity becomes too low [2] – why would

females risk that [5]? Using evolutionary modelling, we show that

females who mate with neighbours incentivize males to cooperate

towards public goods. From a male perspective, multiple mating

and paternity uncertainty imply that their offspring may be spread

across several neighbouring nests; this makes it beneficial to focus

on the safety and productivity of the entire neighbourhood rather

than monopolizing resources for their own social nest. Since many

males share that perspective, it is in their self-interest to cooperate

with other males to provide such public goods more efficiently.

From a female perspective, the benefits of a cooperative

neighbourhood may outweigh the risk of lost care from her social

mate. Besides, males maintain incentives to stay around, although

their paternal investments may be redirected from care provided

at their own nest (such as feeding), towards neighbourhood

activities (such as vigilance, predator mobbing, or expulsion of

intruders).

Our explanation for extra-pair mating in birds is also a new

mechanism for the evolution of cooperation, one which may

sustain public goods among unrelated males in large groups. One

has to be cautious with semantics as the term ‘‘cooperation’’ has

different definitions depending on context. In discussions of mating

systems, ‘‘cooperation’’ is often used synonymously with ‘‘cooper-

ative breeding’’ [6], a particular mating system in which some

sexually mature individuals sacrifice all or some of their

reproduction and instead help more dominant individuals to

succeed reproductively. In this paper we will use ‘‘cooperation’’ in

a broader sense to denote costly and voluntary investments that

benefit others (beyond own offspring), and we will in particular

focus on cases where collective action is more efficient than

multiple individuals acting in isolation.

The discipline of cooperation theory has identified several

mechanisms whereby cooperation may evolve, including reciproc-

ity where favours are returned [7], kin selection benefiting relatives

[8], mutualism where there is no net cost to cooperation [9], and

group-level selection where cooperative groups are more produc-

tive and replace selfish groups [10]. Reciprocity has received

considerable attention [11] and may be efficient in pairwise

interactions [12]. In larger groups, stable cooperation based on

reciprocity requires assortative interactions so that cooperative

individuals meet more often than by chance [13,14], agents

capable of recognizing cooperative individuals [15,16], or

sanctioning of cheaters [17]. With many players, cooperative
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benefits need not arise through pairwise interactions but may

result from collective investments in a public good; this logic is

formalized in public goods games [18]. Here individuals perform

costly cooperative acts that produce a public good of greater value

than the sum of individual investments, but which anyone in the

group may benefit from, regardless of investment. The conflict

between the group, which would perform optimally if everyone

invested in cooperation, and the individual, who would be better

off by exploiting the public good while letting others pay the

cooperative investment, is at the heart of the tragedy of the

commons [19]. In some cases kin selection may stabilize public

goods [20], and in humans sanctioning institutions play a critical

role [21]. But in many cases cooperators are neither kin nor do

sanctioning institutions exist, from which Clutton-Brock [22]

concluded that ‘‘cooperation between unrelated individuals remains a

problem’’ and May [23] even argued that ‘‘the most important

unanswered question in evolutionary biology, and more generally in the social

sciences, is how cooperative behaviour evolved and can be maintained in human

or other animal groups and societies.’’

Before we detail our mechanism of how extra-pair mating may

cause evolution of cooperation it is worthwhile to briefly review the

main current explanations for why females in socially monoga-

mous relationships mate multiply. The first class of explanations

relate to genetic benefits, often referred to as indirect effects or

‘good genes’. Trivers [24] argued that because females generally

invest more in each offspring than males do, they should be choosy

about the mate’s quality while males should prioritize the quantity

of mates. The ‘good genes’ hypotheses state that since not all

females can be paired with the genetically best male, they seek

copulations with extra-pair males of superior genetic makeup to

increase offspring fitness [3,25]. A variant focuses on compatibility

between the paternal and maternal genome [26], as genetically

complementary males may sire heterozygous offspring [27] with

potentially higher fitness e.g. through improved immuno-compe-

tence [28]. By selecting partners with the right level of genetic

complementarity, females may avoid both out- and inbreeding

[29]. Theoretical studies suggest that the potential benefits of

genetic effects are most likely small [30], that heterozygosity of

extra-pair offspring may be overestimated [31], and that beneficial

effects to extra-pair half-siblings may be due to maternal effects

[32]. Meta-analyses conclude that genetic effects do not provide

benefits of the magnitude required to explain its widespread

occurrence [33–35]. Parker and Birkhead [36] argued that ‘‘given

the amount of effort that has been invested (…) and the lack of evidence that

females gain indirect benefits, it may be time to consider alternative

explanations.’’

In contrast to ‘good genes’ effects, females may mate with extra-

pair males to obtain direct or ecological benefits, for example to

ensure fertilization of their eggs [37], to obtain nuptial gifts from

several mates [38,39], or to recruit increased paternal care at her

nest [2,40–42]. Observations on red-winged blackbirds (Agelaius

phoeniceus) suggest an even wider cast of female-extra-pair mating.

In some populations, females solicit extra-pair copulations after

which a territorial male may allow extra-pair females to forage on

his territory; he may also defend her nest against predators but not

offer similar benefits to other females [43,44]. Females who

included feeding areas outside their social mate’s territory

increased the mean and reduced variance in foraging rates [45].

In the group-breeding alpine accentor (Prunella collaris) dominant

females interrupt copulations of subdominant females and thereby

mate with comparatively more males, as a consequence they

receive more help and achieve higher offspring survival [46,47].

Although such conspicuous exchanges of benefits with extra-pair

mates are rare [25], we argue that many forms of paternal care

potentially are overlooked because they involve investments

towards public goods away from the nest. By mating with extra-

pair males, females may construct a social network centred at her

nest, and which provides benefits to her but in a distributed and

diffuse manner. This is in line with Lima’s [48] review of the

abundant but poorly explained cooperative behaviours at bird

breeding grounds, and may be common in species where offspring

are dependent for a prolonged period [49]. Examples of public

goods in bird systems include vigilance [50], alarm calls [51],

calling networks [52,53], and predator mobbing [54]. In other

taxa, public goods include defence of burrows [55], patrolling of

joint territories [56], and sharing of large prey [57].

In this paper we illustrate how the problems of explaining extra-

pair mating and evolution of cooperation are two linked questions

with a common solution. One direct consequence of extra-pair

mating is that it causes paternity uncertainty, which may reduce

the risk of infanticide [58,59]. We extend this logic by noting that

paternity uncertainty incentivizes a male not only to abstain from

inflicting harm on a potentially direct descendant, but also to

cooperate and positively create public goods for the whole

neighbourhood since his offspring can belong to any of several

broods. From a set of models we derive hypotheses that align with

observations of abundant [48] and sex-specific [60] cooperative

behaviours at breeding sites, a positive correlation between

productivity of offspring mass and rates of extra-pair paternity

[61], a strong effect of predation mortality [56,62], the dominance

of neighbours as successful extra-pair sires [63,64], and aggrega-

tion during breeding despite potential for competition and conflict

[65].

Our models focus on socially monogamous birds because there

exists a rich literature on extra-pair mating for this taxon

[1,33,34,62]. Extra-pair mating is also common among fish

[49,66,67], also live-bearing ones [68]. The literature on mammals

more often refers to multi-male mating, which occurs widely for

example in rodents [69,70] and group-living primates [56,71].

The general theoretical insights thus have relevance for other taxa

than birds, so we will return to a general treatment of extra-pair

mating in the Discussion.

Models and Results

We use evolutionary models to analyse the influence of extra-

pair mating on cooperative behaviours. The models consider two

or more socially monogamous breeding pairs, and quantify fitness

and selection gradients on traits that determine individual

reproductive strategies. We assume no ‘good genes’ benefits but

focus only on how the ecological effects of care, provisioning, and

protection affect expected offspring survival. We present models

for two separate ecological mechanisms, each with specific trade-

offs. In our first model, there is competition between males over

territories that contain resources required for breeding, and the

key trade-off for males is between paternal care at the nest and

territorial defence. In a second model, males may engage in

collective vigilance and anti-predator behaviours, and the key

trade-off is between paternal care and investment in cooperative

defence. After showing results from each model we extend both

models by assuming a trade-off between an individual’s total

reproductive investment and survival, which introduces parental

conflict and the possibility of males to abandon nests.

Territorial competition over resources
The ecology of territorial breeding. In many species males

defend breeding territories and compete with their neighbours for

mates, breeding sites, and food resources [72,73]. Territorial
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defence requires vigilance to detect strangers, displays to signal

occupancy, and sometimes fighting to expel intruders. The time

and resources needed to sustain these activities are often traded off

against other activities such as foraging, resting, or parental care

[74]. Territorial behaviours may also increase the risk of mortality,

as combats may incur injury or fatality, or when vocalizations and

displays attract the attention of predators [48,51].

Territorial behaviours are most conspicuous while borders are

fluid and being negotiated [72]. Failing to challenge intruders may

lead to territory loss [75] and delayed trade-offs are likely, for

example if early investments into establishing a territory has

energetic costs that reduce survival or the ability to provide care

later in the season [74].

The model for resource defence. Our model focuses on

bird mating systems where males monopolize resources within

their breeding territory, and where these resources can be

exploited by the male and female to provision their young. Males

can thus invest in territory defence d , as well as in offspring care

cm, which is directed at the nest and includes provisioning and

protection of the young. Females lay a fixed number of eggs at a

cost r0 and invest in maternal care cf at the nest. For simplicity we

assume linear trade-offs between these activities, so reproductive

investment is given as rm~dzcm and rf~r0zcf for males and

females, respectively. We start with the assumption that

rm~rf~1, i.e. that males and females have a fixed total

investment in reproduction. The amount of resources a male

monopolizes is modelled as a tug-of-war, and thus depends on a

focal male’s investment in territory defence d ’ and the defence

strategy d of his neighbour(s), plus competitive pressure l from

non-resident floaters. In the simplest case we consider two pairs;

then the effect of resource defence on offspring survival is

q(d ’Dd)~
d ’

d ’zdzl

� �a

:

The relative investment in territorial defence hence determines

the proportion of resources that the focal male controls and a
scales the influence of resources on offspring survival. The effect of

care on offspring survival depends on contributions from each

parent, i.e. f (cm,cf )~cc
mzc

c
f . Our argument is not particularly

sensitive to the shape of these functions, but we generally assume

diminishing returns or a linear effect of investments, i.e.

a,c [ S0,1�. Investments in care benefit offspring directly, whereas

the value of resource defence by the male depends also on the

defence strategies of neighbouring males. The expected number of

surviving offspring w is our fitness measure, where

w~f (c’m,cf )q(d ’Dd) with prime denoting the focal male’s strategy

(see Supporting Information S1). Note how care at the nest and

access to resources need to be balanced to achieve high offspring

survival.

Extra-pair paternity and fitness. Consider first a single

breeding season and only two neighbouring nests. With no extra-

pair paternity, male fitness wm is identical to female fitness wf .

Average offspring survival would be maximized if males cooper-

ated and refrained from aggression, and instead invested heavily in

care. In effect, this endpoint of the model corresponds to males

defending only external borders of a joint resource territory to

keep non-territorial floaters at a distance. This cooperative

solution is evolutionarily unstable because a territorial male who

aggressively attains a larger share of the resources will have higher

fitness. Strong territorial defence will therefore spread and

dominate in the population (see Fig. 1).

Extra-pair paternity may alter this outcome. If each male sires a

proportion x of the offspring in the neighbour’s nest, male fitness

wm now depends on offspring production both in his social nest

wWP and in the neighbouring nest wEP:

wm~(1{x)wWPzxwEP:

We first assume that males have the same probability of gaining

and losing paternity (this assumption is relaxed in the pairwise

invasibility plot of Fig. 2); the number of expected offspring is

therefore the same but how offspring are distributed across nests

has changed. From a male perspective, neighbouring-nest fitness

becomes more important when x rises. For a male, monopolized

resources benefit his offspring in the home nest, but at the same

time this takes resources away from his extra-pair offspring in the

neighbouring nest. A female who mates with a neighbour

therefore incentivizes this extra-pair male to relax territorial

defence so that resources flow to his potential extra-pair offspring

in her nest. Now facing a less aggressive neighbour, the female’s

social mate would gain more resources if he maintained the same

territorial behaviour. Because of the trade-off between territorial

defence and care, however, his fitness is optimized by reducing

aggression, but only so much that he still secures slightly more

resources than before. This has the important consequence that it

frees time for care. By parallel reasoning, the neighbouring female

will benefit from recruiting an extra-pair mate too, which may

reduce territory defence even further (see also Supporting

Information S2 for an interpretation of the resource territoriality

trade-off in terms of a Prisoner’s Dilemma game).

Evolutionarily stable strategies and invasion

analysis. For a given extra-pair paternity (EPP) rate we find

the best male strategy for care and territorial defence using

invasion analysis [76,77] (see also Supporting Information S1).

This approach assumes a population where all individuals follow

the same strategy (termed ‘‘resident’’) and considers the growth

rate of a rare strategy (referred to as ‘‘mutant’’ and denoted with

prime). By making small changes to the strategy for male

investment in care and territorial defence we calculate growth

rate of this mutant strategy and iteratively replace it with one that

does better, until a strategy that cannot be invaded by any mutant

strategy is reached; this is considered to be the best male response

to a given EPP level. We then repeat this for many EPP values to

show how males should optimally respond to different female

mating behaviours.

To test whether extra-pair mating can evolve as a female-driven

strategy we compare two nests where one of the females follows a

mutant extra-pair mating strategy x’~xzDx that results in a

marginally higher EPP level than in the resident population; if she

experiences a net fitness increase it is assumed that genes for that

behaviour can spread and establish themselves in the population.

When testing mutant EPP strategies, male extra-pair paternity is

not symmetrically distributed among the neighbouring males: the

social mate experiences increased levels of cuckoldry whereas

neighbours benefit from higher EPP. Using the approach

described above we find the male strategy that is the best response

(denoted with asterisk) of both the within d�WP and extra-pair d�EP

mate of the female mutant. This implicitly assumes that males use

female behaviour or other cues to assess within- and extra-pair

paternity [78], and that they facultatively adjust paternal care at

the nest [2,79] in response to their mate’s mating behaviour (i.e.,

males respond by evolved phenotypic plasticity). We then calculate

the selection gradient on x, and through repeated iterations make

small changes to the resident female strategy in the direction of a

Extra-Pair Mating and Evolution of Cooperation
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Figure 1. Extra-pair paternity (EPP) favours reduced territorial aggression between neighbours. (A) Evolutionarily optimal male
investment strategy in territory defence (green area) versus care (orange) as function of EPP. (B) Average fitness as a function of paternal investment.
Increasing EPP levels climb the fitness landscape until the ESS (w) at the cooperative solution (white circle) (r0 = 0; rf = rm = 1; other parameters as in
Table 1).
doi:10.1371/journal.pone.0099878.g001

Table 1. Variables and parameters.

Symbol Description Value

Strategy variables

cf Maternal care (subscript ‘f’ indicates female)

cm Paternal care (subscript ‘m’ indicates male)

d Male investment in territorial defence

k Male investment in collective vigilance and defence

x Rate of extra-pair paternity

Functions

f Effect on offspring survival of parental care

g Total benefit for offspring survival of being in a group

mf, mm Total annual mortality rate

q Effect on offspring survival of resources defended in territory

rf, rm Total reproductive investment

wf, wm Expected fitness, proportional to lifetime production of fledglings

Ecological and life-history parameters

a Cost of aggregation 0.04

h Rate at which group benefits increase with cooperative investment 0.5

l Competitive pressure from floaters per resource area 0.1

m0 Annual basal mortality rate Varied

mr Annual mortality rate due to reproductive investment at r~1 0.1*; 0.25**

n Number of breeding pairs in neighbourhood Varied

u Summed group investment in cooperation at which the effect
of collective defence increases most rapidly

2.0

a Exponent in function q (effect of resources) 0.7

b Exponent in functions mm and mf (mortality cost of reproductive investment) 3*; 1**

c Exponent in function f (effect of care) 0.7

*Resource territory model; ** Collective vigilance and anti-predator defence model. (See online Supporting Information S1 for a comprehensive table of variables and
parameters.).
doi:10.1371/journal.pone.0099878.t001
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positive gradient. Given the model and assumptions it makes, we

define the evolutionarily stable strategy (ESS) as the male and

female strategy set where mutants of either sex no longer can

invade.

Results from resource territory model: EPP reduces male

investment in territorial defence. Increased levels of EPP

select for male strategies with more care and less neighbourhood

aggression (a ‘dear enemy’ effect) (Fig. 1A). From a female

perspective, reduced territoriality frees time for paternal care,

which benefits her offspring. There is thus a positive selection

gradient on female extra-pair mating behaviour that leads to

higher EPP, provided that males respond to variations in female

EPP levels (Fig. 2A). As a result, the mating strategies climb the

fitness landscape towards the cooperative solution (Fig. 1B). In the

extreme case where the two males have equal proportions of

within-pair and extra-pair offspring, each male has the same

interest in both broods, resources are equally distributed but

defended less aggressively, and the cooperative solution has

become the best male response (Fig. 1B).

Despite the benefit of reduced aggression as males gain

paternity in several nests, each male has a strong incentive to

protect paternity in his own nest (indicated by the strong fitness

gradient when moving parallel to the y-axis in Fig. 2C,D). In the

model we assume that females fully control the level of EPP,

although males that guard their mate may constrain female extra-

pair mating behaviour [80,81]. This may weaken female

incentives for engaging in extra-pair mating, reduce EPP levels,

and prevent evolution from reaching the cooperative solution.

Figure 2. Fitness consequences of female extra-pair mating. (A) Pairwise invasibility plot showing relative fitness of a focal female with a
different extra-pair paternity (EPP) level than the population mean. For any EPP level along the x-axis, a female with higher EPP than the population
mean (above the black diagonal) has higher fitness and can invade and replace the dominant strategy in the population. Arrows show a hypothetical
sequence of invasions until the ESS (w) is reached when EPP is 50%. (B) Female extra-pair mating has minor consequences for the neighbouring
female, who with these parameters actually benefit too and should therefore not oppose the behaviour. (C) The social mate of the focal female
experiences a severe drop in fitness if she increases her level of EPP, and one can expect counterstrategies such as mate guarding to prevent
paternity loss in his social nest. (D) As expected, the highest fitness benefit accrues to the neighbouring male, who gets extra offspring that two
neighbours will provide the care for. Above sperm, his contribution is to relax territorial defence to allow some resources to flow in the direction of
his extra-pair offspring.
doi:10.1371/journal.pone.0099878.g002
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The effect of reduced territorial aggression is not restricted to a

neighbouring pair but may be extended to an entire neighbour-

hood (see Supporting Information S1). Male incentives for

aggressive defence are, however, stronger in larger neighbour-

hoods because the reduction of one male’s defence will allow

several neighbours to grab a larger territorial share; females

therefore need to push EPP higher to attain similar benefits.

Collective vigilance and anti-predator defence
The ecology of collective anti-predator behaviours. Breed-

ing birds often engage in cooperative predator defence: they take

turns being vigilant, collectively mob predators, or elicit alarm calls

that warn others of approaching dangers [48,54]. A comprehensive

study of colonial breeding in bank swallows (Riparia riparia) found

multiple costs of group living while the only benefit supported by their

data was collective anti-predator defence [82]. Cooperation over

shared vigilance [83] and collective defence [82,84] is often more

efficient than individual investments and frees time for other activities

such as foraging and care. Alarm calls may, however, give away the

location of the caller and possibly that of its nest [51], and mobbing

may increase risk of injury or death of individuals that participate

[54]. Alarm calls and mobbing are thus risky for the individual but

beneficial for all group members; an ecological setting similar to

public goods games where a common good, shared by a group of

individuals, increases with cooperative investments but involves costs

to individual cooperators [19].

The model for collective vigilance and defence. The

general assumptions are similar to those of the resource territory

model where males and females allocate their reproductive

investment between different activities. Here we let male

investment in cooperative behaviours k conflict with provisioning

and care for offspring at the nest cm, so rm~kzcm. A male who

cooperates in collective defence will therefore increase the public

good, but at a cost of reduced care in his own nest. We assume that

the public good increases with the sum of cooperative investments

from all males in a group, and that all group members benefit

regardless of their investment. Group members may also

experience aggregation costs such as intensified food competition,

elevated conflict levels, and higher susceptibility to parasites and

diseases. The net group effect g for a group of n pairs where all

males invest k in collective anti-predator defence except for one

focal male (denoted by prime) who invests slightly more

k’~kzDk is hence:

g(kzDkDk,n)~
exp {a(n{1)ð Þ

1z exp {h nkzDk{uð Þð Þ ,

where the aggregation cost increases with the number of

neighbours and the interference strength a. The cooperative

benefit increases with the sum of investments in collective defence

(Fig. 3), and changes most rapidly when the sum of collective

investments is close to u.

The evolutionary dilemma is that collective anti-predator

defence is more efficient than solitary actions, but each male has

incentives to prioritize provisioning and care for offspring in his

nest and let others invest in cooperative defence. Again, females

can change the evolutionary outcome by extra-pair mating. In a

group of n pairs, the focal male who invests slightly more in

cooperation than the rest, has fitness:

w’m~g(kzDkDk,n) (1{x)f (cm{Dk,cf )zxf (cm,cf )½ �:

More cooperation (kzDk) will increase the public good (g) and

benefit all his offspring, whereas reduced care (cm{Dk) only

affects the within-pair offspring in his own nest. As the proportion

of extra-pair young increases with higher x, the male experiences

the full benefit of a given cooperative investment, but the cost

affects only his social nest and is reduced. As before, the fitness of

the mutant strategy is related to that of the resident population and

the best male strategy is found where no w’m is larger than the

fitness wm of the resident strategy.

Results from collective vigilance and anti-predator

defence model: Extra-pair mating increases cooperative

investments. Extra-pair mating incentivizes males to invest in

cooperative behaviours. This happens because the cost in a male’s

social nest affects both his genetic offspring and extra-pair young

sired by others, whereas his cooperative investment benefits all his

offspring independent of location. As the proportion of within-pair

offspring in his own nest decreases, the threshold for engaging in

cooperation is lowered. The evolutionarily stable male strategy

involves higher investments in collective defence and less care

directed towards his social nest, which adds up to a benefit to the

whole neighbourhood (Fig. 4A). Females benefit from recruiting

extra-pair mates because they will cooperatively protect her nest,

but this comes at the cost of reduced investment from her social

mate as he gains less paternity. Although females receive less help

with care, they experience a net fitness benefit because offspring

survival increases. As EPP levels increase and trigger higher

cooperative investments by males, cooperation can be stable also

in groups larger than two pairs and thus become more efficient.

Extra-pair mating may thus be a mechanism to extend the social

neighbourhood with a positive effect on fitness, as shown by the

fitness landscape in the background of Figure 4B where offspring

survival peaks at intermediate group sizes and relatively high levels

of extra-pair paternity.

Extending models with trade-offs between current and
future reproduction

Males may respond to cuckoldry by decreasing current

reproductive investments if alternative reproductive opportunities

exist [5,84]. We include this possibility by allowing males and

females to allocate reproductive investments across several

breeding seasons. Reproductive investment in one season may

influence future reproductive events, for instance by reducing the

probability that a parent will survive to the next breeding season

[85–87]. This trade-off makes the game between the male and the

female more pronounced and there is room for parental conflict

with potential consequences for future breeding attempts and

longevity. We assume that the risk of mortality increases with

higher reproductive investments r, from a baseline mortality m0:

m~m0zmrr
b,

where mr and b scale the relative cost of current investments. Male

and female reproductive strategies affect their expected longevity,

and mortality may also reduce current reproductive output if one

of the parents dies during the breeding season. If females invest

more in reproduction than males, they have lower survival

probability, which affects the operational sex ratio and may

intensify male-male competition for mates (see Supporting

Information S1).

Results from extended models: Extra-pair paternity

declines with expected longevity. When longevity increases

and future breeding becomes more likely, both males and females

evolve reduced annual reproductive investment. Females benefit
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from EPP only as long as reduced aggression over resources

increases male investments in care (resource territory model; Fig. 5,

Supporting Information S1) or when the benefits of male-

produced anti-predator defence outweigh the costs of reduced

paternal care (collective vigilance and defence model; Fig. 6).

Males who lose paternities in the home nest reduce their

reproductive investment more than others; females therefore need

to balance the cost of reduced care against the benefits they can

achieve through EPP and male-male cooperation. In model for

collective vigilance and anti-predator defence, joint protection

from neighbours makes it easy for cheating males to opt out of the

cooperative defence by reducing current investments or even

abandoning the nest. This is an obvious cost for females and EPP

levels are consequently predicted to decline and approach zero as

longevity increases (Supporting Information S1), which is in line

with observations [62] and general theory [42,88]. Note that the

model does not assume any carry-over effects of reproductive

investments, so any surviving individual has the same probability

of being mated, which may have implications for the level and

stability of cooperation.

Discussion

In this paper we have presented a new mechanism for the

evolution of cooperation towards public goods. The logic is simple.

When a male has all his offspring in a single nest, evolution favours

reproductive strategies that focus his attention there: by competing

with others to maximize his share of resources; or by cheating on

public goods and withdrawing from cooperative investments,

thereby causing a tragedy of the commons. Female extra-pair

mating has the important role of altering the incentives for males:

because males potentially have offspring in several nests, natural

selection favours males who cooperate towards the productivity

and security of the entire neighbourhood. This may include

sharing of resources, reducing aggression, being vigilant, alarming

of dangers, and defending the neighbourhood rather than the

single nest. Cooperation thus evolves from individual male and

female self-interests, making the whole neighbourhood safer and

more productive.

Paternity and paternal investment
Effects of paternity uncertainty. It has been noted that

multi-male mating confounds paternity and thus prevents males

from committing infanticide of offspring that are potentially theirs

[58]. Hrdy [89] extended this logic in the context of allo-parental

care; her focus was how high male mortality in many hunter-

gatherer societies makes it unlikely that a paternal care-giver will

survive for the whole duration of offspring dependence. Extra-pair

mating may then serve a bet-hedging function, as mothers can

enlist support from other males in case her partner dies. Stacey

[40] suggested a more direct causation, in that females through

extra-pair mating may recruit multiple males to help with care for

the female’s offspring. This thinking was central also to the eye-

opening studies on the intricate and variable mating systems of the

dunnock [2,41]. The common logic is that paternity uncertainty

may not only prevent something negative but may also produce

something positive. Our approach extends this perspective by

showing mechanisms through which neighbourhood cooperation

among unrelated males may evolve.

Paternal reproductive investment beyond care at the

nest. Studies of paternal care in birds have focused on

quantifiable male activities at the nest; these typically include

brooding, feeding, and offspring protection [2,90]. Behaviours at

the nest need not be the only activities a male engages in to

maximize the fitness of his offspring. Lima [48] pointed to many

cooperative behaviours at bird breeding grounds that resemble

public goods but which have received little attention, including

alarm calling [51] and mobbing [54,82,91]. These are seldom

regarded as parental care investments, but as long as cooperative

behaviours benefit potential offspring and are costly to the male in

terms of energy, survival, or opportunity, they should be included

in the budget of reproductive investment [40,56].

Although paternal contributions away from the nest are central

to our models, it is important to note that the cooperative benefit

and its consequences for care differ between our two models. In

the model for collective vigilance and anti-predator defence, extra-

pair mating causes individual males to provide less paternal care at

their social nest and instead take part in neighbourhood activities

that produce a public good, such as vigilance and mobbing. This is

in contrast to the resource territory model, where extra-pair

Figure 3. Assumptions of the model for collective predator defence. (A) The relative effect of care on offspring fledging success is the same
as for the resource territory model, and is the sum of effects of male and female care. (B) The effect of cooperative predator defence is modelled as a
sigmoid function of cumulative investments in the group. The thick green line is the effect if the resident strategy, i.e. the mean level of investment in
the group �kk~nk=n, were to change. The thin black line is the effect of one focal individual in a group of n = 8 changing his investment k’~kzDk in
cooperative defence, assuming that the remaining group members follow the resident strategy with k = 0.5. (C) Fitness is the product of the orange
and green lines from panels A and B, respectively, and peaks (w) at intermediate values. (a = 0.02; rf = rm = 1; other parameters in Table 1).
doi:10.1371/journal.pone.0099878.g003
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mating causes more paternal care at the nest because paternity

spread takes away reasons for aggressive resource monopolization.

Reproductive conflict and the mating game
At breeding grounds, both competition and cooperation with

others influence individual pay-offs. The male and female of a

mated pair shares a common interest in raising viable offspring,

but each may benefit from having the other investing more in care

and protection [24]. Among males, the traditional view is that

conflict dominates [92], but a consequence of the mechanisms in

our models is that cooperation among unrelated males emerges.

This brings with it new and sex-specific lines of conflicts, where

males may adjust care investments in response to mating access or

paternity [2,41]. Mating with multiple males may be a mating

strategy by which females trigger help from additional males [40],

and they may hence compete with other females to channel

benefits produced by males towards their own nest. Although there

is intense competition among males for matings, the game changes

once eggs have been fertilized as neighbourhood cooperation may

be favoured by individual-level selection.

Female mating tactics. Our models show that the level of

extra-pair mating may evolve as a female-driven strategy, which is

corroborated by several empirical observations: females are

observed to actively seek extra-pair copulations in many species

[2,3,4]; forced copulation is not common in birds [93]; and in one

particularly well-studied population of song sparrows (Melospiza

melodia) the heritability of male extra-pair success is virtually none

[94] whereas the proportion of extra-pair young in a female’s

brood shows significant heritability [95]. These lines of evidence

support the view that extra-pair mating is at least partly under

female control, but to what degree may vary even among

populations of the same species [96]. Females can also control

fertilization through post-copulatory selection and sperm compe-

tition [25], including ejection of sperm from previous matings [2].

If females synchronize their fertile period, males experience a

stronger conflict between mate guarding and soliciting of extra-

pair copulations, which likely makes it easier for females to control

their mating activity [41,97].

Male mating tactics. To evolve as a female-driven strategy,

extra-pair mating has to channel more benefits towards a female’s

nest than achieved by less promiscuous females. This requires

phenotypic plasticity in the male response to the shift of paternity

distribution, and therefore that they have some information on

which to act. In birds, males can rarely recognize their own

offspring [78], but they may use information about their mate’s

behaviour to assess within-pair paternity. When it comes to extra-

pair paternities, it is a safe assumption that males have information

about their own extra-pair mating activity and can use that to

assess the likely distribution of offspring in the neighbourhood.

Although our models assume that males have full information,

preliminary models in which extra-pair males have more accurate

information than social males predict that extra-pair mating may

evolve more easily and to higher levels.

The models have for simplicity omitted several important

behaviours. For example, males may attempt to pre-empt

paternity losses through mate guarding or compete to sire extra-

pair offspring [98]. It is in each male’s interest to protect paternity

in his own nest, regardless of the cooperative benefit that follows

from paternity being spread across different nests (consider the

very steep drop in fitness of the social male if his female increases

extra-pair mating in Fig. 2C). Whether mate guarding, frequent

within-pair copulation, increased advertisement, or extra-pair

mating effort evolve depends on how males best can allocate their

reproductive investment [98]. Such strategies may bring the

realized extra-pair paternity level in the population below that

predicted by our models.

Model predictions
Our models only caricature the complex behavioural interac-

tions at bird breeding grounds, but even from this simplified

evolutionary game several general patterns emerge. It is worth

stressing that the mechanisms we propose do not preclude the

simultaneous operation of ‘good genes’ effects, infertility insurance,

or other mechanisms that may cause extra-pair mating or

cooperation.

Prediction: Extra-pair mating increases fitness of whole

nests and neighbourhoods. A key prediction from ‘good

genes’ hypothesis is that extra-pair offspring (EPO) should have

Figure 4. Extra-pair paternity (EPP) promotes cooperative anti-
predator defence. Males trade-off paternal care and cooperative
predator defence. (A) As EPP increases, males cooperate more because
costs of reduced paternal care affect only within-pair young whereas
cooperative defence protects all offspring. (group size n = 5; rf = 1.0 of
which egg investment r0 = 0.3; see Table 1 for other parameters). (B)
Fitness landscape as a function of neighbourhood size and male
cooperative investment. With no EPP the evolutionary outcome is
solitary breeding with no cooperation (lower left corner). EPP increases
along the black line (dots mark each 10%). Short-lived species reach the
cooperative solution (white circle) for high EPP levels.
doi:10.1371/journal.pone.0099878.g004
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higher fitness than their within-pair (WPO) half-siblings. Conclu-

sions from detailed population studies are variable: sometimes

there is no difference between WPO and EPO or even a survival

cost to EPO [99], sometimes there is a benefit to some EPO

[63,100], and in other cases EPO show more consistent benefits

[28]. Meta-analyses that integrate across studies conclude that

genetic benefits to EPO are weak or absent in most cases and are

unlikely to be the main driver behind the widespread occurrence

of extra-pair mating [33,34].

In contrast, it follows from our mechanism that extra-pair

mating improves fecundity or survival of whole nests or

neighbourhoods. The most striking observation of this is not from

birds but from a rodent, the Gunnison’s prairie dog (Cynomys

gunnisoni), for which there was a direct relationship between litter

size and the number of males the female had copulated with [101].

In this species, groups of multiple males and multiple females share

a network of underground burrows, and females forage above-

ground, frequently beyond territory borders. This could be

consistent with our model for resource territories, although the

paper does not report territory location for the extra-pair males.

To our knowledge, bird data has only rarely been analysed for

whole-nest effects in a similar way. Predator mobbing is common

in tree swallows (Tachycineta bicolor), and here older and experi-

enced females had more extra-pair sires [102], higher hatching

success [103], and larger clutch size [104]. In dark-eyed juncos

(Junco hyemalis) extra-pair offspring had higher fitness: sons through

extra-pair offspring and daughters through increased fecundity

[100], which is as expected from our theory if female extra-pair

mating and male cooperative investment are heritable traits. It

would be interesting to see further analyses of whole-nest and

neighbourhood effects and to contrast populations of the same

species differing in the level of extra-pair paternity.

Prediction: Neighbours dominate as extra-pair

sires. We predict that extra-pair copulations should be

predominantly with neighbours who can share resources, be

vigilant, or help with nest defence. Where spatial patterns in extra-

pair sires have been reported, neighbours dominate

[27,61,64,105,106–109]. In song sparrows territory neighbours

sired 95% of the extra-pair young in a spread-out mainland

population [108] and 88% of all EPO in a dense island population

[107]. There was a tenfold difference in territory size between

these sites, suggesting that being a neighbour may be more

important than distance itself, a conclusion also reached for reed

buntings (Emberiza schoeniclus) [109].

The prevalence of local extra-pair sires is not readily explained

by genetic benefits, although it has often been hypothesized that

frequent encounters make assessment of genetic quality easier or

allow more opportunity for copulation [80]. Counterarguments

could be i) that extra-pair copulations with distant sires likely

would reduce the probability of being detected; and ii) that several

Figure 5. Extra-pair paternity (EPP), territorial defence, and longevity. Annual reproductive investment r evolves in a trade-off with survival.
(A) EPP is common in short-lived species (grey) and drops with increasing life-expectancy (black line, parameters in Table 1). The pattern is robust but
the predicted EPP level depends on ecological parameters, e.g., mortality cost of reproduction (green, mr = 0.05 and mr = 0.2 for thin and bold line,
respectively; blue, b = 2 and b = 4), and the proportion of adult mortality experienced during breeding (orange, b = 0.1 and b = 0.5). (B) For short-lived
species, the ESS involves high EPP, reduced defence, and elevated care. With increasing longevity, the evolutionary outcome is low or no EPP (black
line) and more territorial defence. (C) Fitness landscape for combinations of male care and defence strategies in a short-lived species (longevity 0.5
breeding seasons; m0 = 1.59). Higher EPP results in less territorial defence, but the evolutionarily stable care strategy (w) is below that of the
cooperative solution (#).
doi:10.1371/journal.pone.0099878.g005

Figure 6. Longevity reduces EPP levels and male-male
cooperation. Fitness landscape as a function of neighbourhood size
and male investment in cooperative defence. With no EPP the
evolutionary outcome is solitary breeding with no cooperation (as in
Fig. 4B). As EPP increases along the coloured lines, the best male
strategy (w) approaches the cooperative solution (white circle) in short-
lived species (dots mark each 10% increase in EPP). In more long-lived
species males prioritize future reproduction and high EPP levels are not
beneficial to females; the best male strategies are found further away
from the cooperative solution (baseline mortality; m0 is 1.69 (black), 0.83
(green), 0.49 (blue), and 0.30 (red)).
doi:10.1371/journal.pone.0099878.g006
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studies report higher heterozygosity for EPO with long-distance

sires but no such effect for EPO with neighbours [63,110]. The

latter observation suggests that while compatibility benefits may

explain extra-pair mating with non-neighbours, there is a need to

look beyond genetic benefits to explain the dominance of local

extra-pair sires.

Prediction: Cuckolding males are often cuckolded

themselves. It is expected from our models that recruiting

contributions from neighbouring males may enhance fitness of a

female’s brood even if she is socially paired with a high-quality

male. This aligns with the common observation that males who

are successful at gaining extra-pair paternity are no better than the

rest at defending paternity in their home nest [64,106,108,111],

which is not easily explained by ‘good genes’ hypotheses.

Prediction: Males show ‘dear enemy’ effects during the

breeding season. Many territorial species are less aggressive

towards neighbours than strangers [112], and such a ‘dear enemy’

effect is a direct outcome of our resource territory model. The

model predicts a ‘dear enemy’ effect in the period from

fertilization to fledging, while the rest of the time there might be

intense competition over mates, fertilizations, and resources. This

was found in the skylark (Alauda arvensis), where males showed no

‘dear enemy’ effect during settlement and pair formation early in

the breeding season, reduced levels of aggression against

neighbours but not strangers in the middle of the breeding season,

while aggression towards neighbours increased again later when

fledglings became independent [113]. This indicates that the ‘dear

enemy’ effect is not linked to familiarity with neighbours per se, but

that the presence of offspring, potentially extra-pair, might cause it

(20% of offspring in the skylark population were extra-pair [113]).

There are two additional twists following from our hypothesis.

First, the dear enemy effect is predicted mainly in the model where

territories combine breeding and resources, which was found also

in a literature review [112]. Second, our theory predicts that males

should reduce aggression against neighbours more than females

would, and in the same review the ‘dear enemy’ effect was shown

most often in males, sometimes in both sexes, and only rarely in

females only [112].

Prediction: Extra-pair paternity is correlated with

predation risk. Females may not be equally successful in

recruiting a cooperative network under all conditions. Low

predation risk might reduce extra-pair mating and male-male

cooperation through two routes. Firstly, the expected benefit from

male-male protection might be low when there are few predators

(model for collective vigilance and defence), which would reduce

the incentive for females to engage in extra-pair mating in the first

place. Secondly, the expected longevity of males will likely be

higher when predation is low, and males may then reduce current

reproductive investments and prioritize future breeding attempts if

extra-pair paternity levels are high. The prediction of reduced

extra-pair paternity at low mortality rates has been documented in

literature reviews [62,114] but is also a prediction from theory that

does not consider cooperative benefits [88].

Individuals might show flexible behaviours or mating strategies

in response to perceived predation risk. When exposed to stuffed

predators, willingness to engage in mobbing and other cooperative

behaviours was increased in pied flycatchers (Ficedula hypoleuca)

[115,116], but it remains to be seen whether this may also

correlate with extra-pair mating behaviour.

Prediction: Extra-pair paternity is correlated with

breeding density. It follows from our hypothesis that a positive

within-species relationship between breeding density and extra-

pair mating can be expected, as has been observed for several

species [109,117,118]. Figure 4B shows increasing fitness with

increasing group size, indicating that if females can choose where

to settle they might prefer dense neighbourhoods. In species where

males settle first, this may lead males to choose territories within

aggregations because they attain higher mating success. A positive

correlation between breeding density and extra-pair mating has

been documented within some bird species [1,119,120], but not

between species [92,119]. Such correlations may arise through

several mechanisms, for example, extra-pair mating has been

viewed as a cost of sociality and not a cause for it, exemplified by

the ‘opportunity hypothesis’ where extra-pair mating is more

common in dense breeding aggregations because females interact

with more potential mates [80]. Related is the ‘hidden lek’

hypothesis [121], suggesting a female preference for breeding in

aggregations because it allows them to better compare male

quality. From both these hypotheses one would expect strong

mating skew in breeding aggregations, but studies on birds often

suggest a more equal partitioning of extra-pair offspring, in line

with our hypothesis. No reproductive skew was found in

aggregations of least flycatchers (Empidonax minimus) [122], but

direct effects in the form of more alarm calling [123] or lower

predation rates in central nests was found in some studies [124]

although not all [125]. In yellowthroat warblers (Geothlypis trichas)

there was lower variance in male reproductive success in dense

breeding areas [61]. Interestingly, there was increased production

of both within-pair and extra-pair young in dense neighbourhoods

[61]. In bank swallows large colonies had positive effects on

offspring survival because predator mobbing was more efficient

[82]. It would be interesting to see further comparisons of

cooperative behaviours and extra-pair mating between high- and

low-density breeding sites.

Prediction: Sex-specific division of labour. As a conse-

quence of extra-pair mating a male’s fitness incentives are spread

across the neighbourhood whereas a female still has all her

offspring in the nest. The distinction between maternity certainty

and paternity uncertainty suggests a new evolutionary basis for

sex-specific division of labour, where we predict that males are

more likely to cooperate towards public goods than females. It has

been noted that mobbing often is performed predominantly by

males [60,84], but none of the adaptive reasons for predator

mobbing listed by Curio [54] provide adequate explanations for

why there should be sex-specificity. A particularly interesting

example of male-male cooperation is the calling network among

red-winged blackbird males [53]. Using seven different call types,

males continuously echo the background call they hear from other

males to signal that all is clear [52], but change signal if there is

danger or disturbance. The new signal is picked up and repeated

over the entire neighbourhood, and due to this vigilance network

females can forage more efficiently [126]. Song matching,

whereby males incorporate elements of neighbours’ songs in their

own, is also known from other songbirds [127] and may serve a

similar function. From this perspective it makes evolutionary sense

that alarm calls uttered by females more often are directed at her

offspring to make them hide or be silent, whereas alarm calls by

males more often are broadcast wider [128].

Prediction: Cooperative behaviours are extra common

during breeding. Lima [48] reviewed anti-predator behaviours

in breeding birds and noted that cooperative behaviours are

abundant but that most are diffuse, have received little attention,

and are poorly understood. This is puzzling, given that sociality

and cooperative behaviours are particularly difficult to explain

during breeding as birds often are territorial and compete for

mates and resources.

Studies on red-winged blackbirds [129] and great tits (Parus

major) [130,131] found positive effects of breeding with familiar
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neighbours, i.e. between individuals who had been neighbours also

during a previous breeding season. These studies further suggested

that the positive effect may be related to cooperative behaviours in

the neighbourhood. In both species, familiar neighbours were

more likely to join in predator mobbing [129,130]. In great tits,

the strongest effects on reproduction occurred when a female had

many familiar male neighbours, that is, between the individuals

who ‘seal the deal’ over extra-pair mating and cooperative

investment also in our model [131]. In addition, there was a

small positive effect on nest success (avoidance of nest predation) if

also the neighbourhood males were familiar with each other.

Systemic effects and future directions
This paper presents a simple mechanism with far-reaching

consequences: where maternity certainty incentivizes each female

to focus care towards offspring in her social nest, paternity

uncertainty and a potential for offspring in several nests incentivize

males to invest in communal benefits and public goods. In this

section we evaluate some of the systemic effects of our hypothesis

and consequences beyond birds and beyond social monogamy.

Extra-pair mating in the light of kin selection. Kin

selection theory [8,20,132] often considers relatedness between

breeders or between breeders and helpers to explain evolutionarily

stable levels of cooperation. In this context, extra-pair mating

reduces relatedness in family groups and may therefore erode the

basis for cooperation [6,133]. Our models do not challenge the

result that cooperative breeding in kin groups becomes more

unstable with extra-group mating. Where we disagree is that this

would have effects for cooperation in general, an inference that

seems to follow e.g. from Cornwallis et al. [6] using ‘cooperative

breeding’, for which their conclusion is valid, interchangeably with

‘cooperation’, which is a much broader phenomenon.

In our models patterns of relatedness emerge from mating

strategies [134] so that the distribution of kin differs between male

and female breeders. Although this alters incentives and pay-offs

towards favouring male-male cooperation, the invasion analyses

emphasize how male-male interactions are flavoured both by

conflict over fertilizing mom’s babies as well as cooperation to

benefit dad’s ‘maybes’ wherever in the neighbourhood they might

be.

Synergy with other mechanisms for evolution of

cooperation. Cooperation theory has extended the parameter

region in which cooperation can be stable by including biologically

plausible mechanisms such as individual recognition [11] or lack

thereof [135], interaction networks [13], individual variation

[136], assortative interactions [14], choice of cooperative partner

[16,137], social standing [15], self-regard [138], and reward or

punishment [139]. Our models differ from classic cooperation

models by allowing the cooperative investment to be a continuous

trait [135,137], by letting pay-offs be gradual and emerge from

ecological interactions, and by including several types of players

that differ in their characteristics and motivation. This adds

ecological realism to cooperation models [22], but was also

essential for understanding that cooperative dynamics may

underlie an ecologically well-studied problem such as extra-pair

mating.

Although reciprocity, kin selection, and group-level selection are

not included in our models, these mechanisms may act in synergy

with extra-pair mating and make it easier for cooperation to evolve

to the high levels observed in breeding populations. In principle, a

small effect of ‘good genes’ or infertility insurance could favour an

initially low rate of female extra-pair mating, which could trigger

and entrain selection towards cooperative behaviours and higher

extra-pair mating. If males can recognize extra-pair offspring or

divert attention to nests that more likely contain them, the

behavioural interactions become less diffuse and more reciprocal

[44,115]. If males signal cooperativeness and females base their

choice of extra-pair mates on such a signal, then competitive

altruism may add momentum to the evolution of cooperation

[16,137]. Once established, female extra-pair mating and male-

male cooperation could spread through group-level selection [10].

It is interesting to note that among birds, relative brain size, which

could be relevant for individual recognition of cooperative

partners or for manoeuvring the complex behavioural games

when extra-pair mating is involved, is correlated with social

monogamy but not with genetic monogamy [140].

Individual differences: A methodological challenge but

evolutionarily potent. Our models do not include individual

differences among males or among females, but in the wild

individuals differ from each other in age, experience, condition,

plumage, parasite load, etc. Obviously, these differences may lead

to variation in reproductive success and context- or state-

dependent mating strategies.

With no individual variation, the models predict an equal share

of paternity among males and an equal share of cooperative

benefits to all females and their offspring. With variation in

individual characteristics these patterns will likely change, but to

predict the direction is not straightforward. Assume that males

vary in their resource holding power, then males capable of

defending rich territories may obtain a higher share of extra-pair

matings than the average male in his neighbourhood, and

individual differences may be a source of variation in male

reproductive success. In contrast, differences may equalize among

females, as females with poor mates or territories may gain access

to additional resources and protection through extra-pair mating.

There is also increasing awareness of how variation in individual

quality may mask trade-offs or relationships between individual

performance across traits [141], as some individuals excel in pretty

much everything [142] or because motivation differs [143,144].

With individual differences, a basis for mate preferences arises.

If females actively seek extra-pair mates who invest more heavily

in cooperation, this may enhance or stabilize cooperative

investments in public goods [16,137]. Females not only benefit

from cooperative extra-pair males, but also from care-giving social

mates, which may cause females to prefer different traits in extra-

pair compared to social mates [145]. Finally, there may be conflict

between choosing a care-giving social partner and choosing a

cooperative neighbourhood for breeding, as cooperative males

may settle assortatively to boost the effects of their cooperative

investments.

Relevance beyond birds and social monogamy. To

extend the relevance to other taxa there is a need to consider

taxon-specific differences in reproductive physiology and the mode

of fertilization. In fish, fertilization is most often external, which

allows the male to better assess paternity as he can know whether

he released gametes in proximity of the spawning female and often

whether other males were around too. With higher paternity

certainty males can identify conditions when it is safe to invest in

care for a single brood, and exclusively paternal care is widespread

among fish [146]. One interesting manipulation of paternity

spread in fish is found in the cichlid Julidochromis transcriptus. Here

females spawn in wedges between rocks and so use the topography

of the environment to distribute paternity: large males who

provide safety only can fertilize the outer eggs whereas the

innermost eggs can only be reached by a much smaller male, who

later cares for the brood [147].

With internal fertilization there is greater paternity uncertainty

but it also allows a greater share of the parental investment to be
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physiologically linked to the female. Internal fertilization in fish is

often related to live-bearing and having big offspring with little

direct care from males. Female birds produce large eggs while

males may share incubation and subsequent feeding and

protection until fledging. In mammals the period of exclusively

maternal care is further prolonged by lactation, and male

provisioning of dependent young is much rarer. Interestingly,

the prevalence of multi-male mating for viviparous species is

roughly the same when comparing fishes to mammals to reptiles

[68] and to birds [1].

In birds, the combination of paternity uncertainty and only

limited reproductive investment being inextricably linked to

female physiology pave the way for social monogamy where

males and females may share several of the tasks involved in

reproduction. In contrast, investments are often split temporally in

fish where females produce eggs while males may provide care, or

by task in mammals where males may help with vigilance or

defence but not so often with direct offspring provisioning or care

[56,148].

The considerations above imply that the core mechanism of

paternity uncertainty and male-male cooperation may actually be

reversed in fish. In the many species with external fertilization and

where males build nests and brood eggs, our theory suggests that

when females lay eggs in several nests they gain diffuse maternity

incentives across the neighbourhood.

In primates and humans males hunt and share large game and

engage in vigilance [83], warfare, and defence [56,149]; activities

that all resemble public goods. In some human societies there are

even cultural practices by which extra-pair mating is ritualized

following communal work days [150] or collective hunting [151],

suggesting that extra-pair mating may have influenced evolution of

cooperation and sociality in our own species.

The right end-point of Figures 1A and 4A are analogous to

group breeding as paternities in each nest are divided evenly

among the breeding males. Among primates there are many

group-living species with frequent multi-male mating and pater-

nity spread. In these, within-group mating may enable peaceful

and productive group dynamics by favouring male cooperative

behaviours [56,89]. The logic of our mechanism may even be

extended to extra-group mating to obtain between-group friend-

liness [56,152,153].

The privileged status of genetic explanations for female choice,

suggested by Darwin [154] and canonized by Trivers [24], may

have led to a historical downplay of ecological benefits as a

possible explanation for extra-pair mating. Our suggested mech-

anism reinstates ecology and direct benefits in this perspective, and

links variation in predation risk or breeding habitat to differences

in male and female competitive and cooperative behaviours. By

redistributing paternity and fitness incentives across a neighbour-

hood, female-driven extra-pair mating may have been a central

step towards evolution of the high levels of cooperation observed

in many species. In addition to being a mechanism for the

evolution of cooperation, our model suggests that extra-pair

mating may also be driving the evolution of breeding aggregations,

and together cooperation and aggregation are cornerstones of

sociality. The theory presented here may thus provide one missing

step towards explaining the highly developed sociality, what is

often termed pro-sociality, in many primates and humans [89].
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