109 research outputs found

    Homogeneous Open Quantum Random Walks on a lattice

    Full text link
    We study Open Quantum Random Walks for which the underlying graph is a lattice, and the generators of the walk are translation-invariant. We consider the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process, and an ergodic result for the state process. We study in detail the case of homogeneous OQRWs on a lattice, with internal space h=C2h={\mathbb C}^2

    A global method for coupling transport with chemistry in heterogeneous porous media

    Get PDF
    Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection-diffusion PDE's coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton-Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that on be able to solve chemical equilibrium problems (and compute derivatives), without having to know the solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009) http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1

    Treatment of rising damp in historical buildings: wall base ventilation

    Get PDF
    Intervention in older buildings increasingly requires extensive and objective knowledge of what one will be working with. The multifaceted aspect of work carried out on buildings tends to encompass a growing number of specialities, with marked emphasis on learning the causes of many of the problems that affect these buildings and the possible treatments that can solve them. Moisture transfer in walls of old buildings, which are in direct contact with the ground, leads to a migration of soluble salts responsible for many building pathologies.http://www.sciencedirect.com/science/article/B6V23-4H7T0H7-1/1/f5e8a4ec173c5dadf120770678facf4

    Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces

    Get PDF
    We use some results from polarity theory to recast several geometric properties of Conjugate Gradient-based methods, for the solution of nonsingular symmetric linear systems. This approach allows us to pursue three main theoretical objectives. First, we can provide a novel geometric perspective on the generation of conjugate directions, in the context of positive definite systems. Second, we can extend the above geometric perspective to treat the generation of conjugate directions for handling indefinite linear systems. Third, by exploiting the geometric insight suggested by polarity theory, we can easily study the possible degeneracy (pivot breakdown) of Conjugate Gradient- based methods on indefinite linear systems. In particular, we prove that the degeneracy of the standard Conjugate Gradient on nonsingular indefinite linear systems can occur only once in the execution of the Conjugate Gradient

    Phonon distributions of a single bath mode coupled to a quantum dot

    Get PDF
    The properties of an unconventional, single mode phonon bath coupled to a quantum dot, are investigated within the rotating wave approximation. The electron current through the dot induces an out of equilibrium bath, with a phonon distribution qualitatively different from the thermal one. In selected transport regimes, such a distribution is characterized by a peculiar selective population of few phonon modes and can exhibit a sub-Poissonian behavior. It is shown that such a sub-Poissonian behavior is favored by a double occupancy of the dot. The crossover from a unequilibrated to a conventional thermal bath is explored, and the limitations of the rotating wave approximation are discussed.Comment: 21 Pages, 7 figures, to appear in New Journal of Physics - Focus on Quantum Dissipation in Unconventional Environment

    Disguised and new quasi-Newton methods for nonlinear eigenvalue problems

    Get PDF
    In this paper we take a quasi-Newton approach to nonlinear eigenvalue problems (NEPs) of the type M(λ)v=0M(\lambda)v=0, where M:C→Cn×nM:\mathbb{C}\rightarrow\mathbb{C}^{n\times n} is a holomorphic function. We investigate which types of approximations of the Jacobian matrix lead to competitive algorithms, and provide convergence theory. The convergence analysis is based on theory for quasi-Newton methods and Keldysh's theorem for NEPs. We derive new algorithms and also show that several well-established methods for NEPs can be interpreted as quasi-Newton methods, and thereby provide insight to their convergence behavior. In particular, we establish quasi-Newton interpretations of Neumaier's residual inverse iteration and Ruhe's method of successive linear problems
    • …
    corecore