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2 Giovanni Fasano, Raffaele Pesenti

by exploiting the geometric insight suggested by polarity theory, we can easily

study the possible degeneracy (pivot breakdown) of Conjugate Gradient–based

methods on indefinite linear systems. In particular, we prove that the degen-

eracy of the standard Conjugate Gradient on nonsingular indefinite linear

systems can occur only once in the execution of the Conjugate Gradient.

Keywords Polarity in homogeneous coordinates · Quadratic hypersurfaces ·

Conjugate Gradient method · Indefinite linear systems

Mathematics Subject Classification (2010) 90C30 · 65K99 · 51N15

1 Introduction

In this paper, we consider methods based on the generation of conjugate di-

rections, namely Conjugate Gradient (CG) methods for the solution of linear

systems [1–3], within the framework of polarity theory. The fact of introducing

this perspective as polarity may provide a geometric framework to describe the

properties of CG–based methods [4], i.e. a different viewpoint from the algo-

rithmic usually considered in the literature. This perspective also motivates

the extension of the use of CG–based methods for solving indefinite linear

systems and, possibly, for the search of stationary points of polynomial func-

tions. In addition, it allows us to recast Planar–CG methods [4–7], for solving

indefinite linear systems (the relevant analysis is not included in the current

paper). Finally, we conjecture that this perspective may suggest a possible ge-

ometric insight for the Quasi–Newton updates, given the relation between CG
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 3

and BFGS (Broyden-Fletcher-Goldfarb-Shanno) or L–BFGS (Limited memory

Broyden-Fletcher-Goldfarb-Shanno) methods [3].

To the best of the authors’ knowledge, the use of polarity to detail CG–

based methods was just hinted by Hestenes and Stiefel in [1], but since then

little can be found in the literature. Indeed, most of the literature studies the

algebraic formalization of CG–based methods, to exploit and improve their

computational performance. As an example, in [8] we can read that “At that

time [1952] it [the CG] was derived from the theory of polarity. Nowadays one

prefers to see it as a method which permits the transformation of a matrix in

tridiagonal form”.

Although the algorithmic perspective defines a line of research of great im-

portance for CG–based methods, it is beyond the scope of the present work.

Here, we focus on the theoretic characteristics of these methods that justify

their use as iterative solvers for linear systems [9], in particular within large

scale optimization problems. In this context, CG–based methods are imple-

mented to solve either positive definite or indefinite linear systems, whose

approximate solutions define gradient–related directions that ensure the global

convergence of the optimization algorithms, along with their fast convergence

to stationary points.

Truncated Newton algorithms (see [9,10]), used to solve large scale min-

imization problems for a real objective function, often implement CG–based

methods. Specifically, these methods are a fast choice to approximately solve

Newton’s equation at the h–th outer iteration, as it reduces to a linear sys-
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4 Giovanni Fasano, Raffaele Pesenti

tem. As an example, in [11,12] CG–based methods are used to yield superlinear

convergence to an optimal solution of large scale unconstrained minimization

problems. Within truncated Newton algorithms CG–based methods are also

used to compute negative curvature directions for the objective function [13–

15]. These directions turn out to be useful in proving the convergence of the

algorithm to stationary points, along with the satisfaction of second order

optimality conditions.

Sequential Quadratic Programming procedures [9], used to solve constrained

minimization problems, may also adopt CG–based methods. In this case, at

the current iteration h, CG–based methods are called to solve a (possibly)

indefinite linear system.

CG–based methods have been recently proposed also to deflate conjugacy

loss [16], and to generate efficient preconditioners for Newton’s equation in

different contexts [17,18].

In this paper, initially, we show how the main characteristics of the CG in

Rn have a counterpart in homogeneous coordinates. Then, we show that po-

larity justifies the application of CG–based methods to the solution of linear

systems, both in the positive definite and indefinite case. Finally, we observe

that fundamental theorems of polarity theory, such as the Reciprocity Theo-

rem and the Section Theorem (see [19] or the early work [20]), apply to general

nonquadratic hypersurfaces. This last observation might possibly suggest fur-

ther guidelines to study the geometry underlying the Nonlinear CG–based

methods and BFGS. In addition, by Proposition 8.3 we are going to see the
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 5

dramatic impact of CG premature stop in the indefinite case, when proving

global convergence properties (see also [11]).

The rest of the paper is organized as follows. In Section 2, we provide an

introduction to polarity theory. In Section 3, we detail the main concepts of

polarity theory in homogeneous coordinates, for quadratic hypersurfaces. In

Sections 4–6, we analyze the relation between polarity for quadratic hypersur-

faces and the solution of symmetric linear systems, both in the case where the

Hessian matrix of the quadratic hypersurface is positive definite and indefi-

nite. Then, in Section 7, we focus on a basic tool (namely polar hyperplanes)

used to describe the relation between polarity and the CG. We prove that

polar hyperplanes are generalizations of tangent hyperplanes to algebraic hy-

persurfaces. We show that the CG implicitly handles polar hyperplanes, and

in particular that the latter hyperplanes coincide with tangent hyperplanes,

when we consider finite points on specific quadratic hypersurfaces. Section 8

contains advances on polarity applied to study the CG. Finally, in Section 9 we

propose some perspectives for possible further investigation, and in Section 10

we draw some conclusions.

We use the following notation throughout this paper. ‖ · ‖ is the Euclidean

norm. Rn is the n–dimensional Cartesian space and Pn is the associated ho-

mogeneous coordinates projective space (in which each point is indicated as

(x1 : x2 : · · · : xn : x0)). Given the vector x ∈ Rn and the scalar x0 ∈ R, for

brevity and with a little abuse of notation we might indicate with (x, x0)T a

vector in Pn. dim(S) is the dimension of the subspace S of Rn. A � 0 denotes
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6 Giovanni Fasano, Raffaele Pesenti

that the matrix A is symmetric positive definite and Ker(A) is the null space

of matrix A. Lowercase Greek letters refer to hyperplanes, either in Cartesian

coordinates or homogeneous coordinates. Finally, we use terms like hyperplane

and linear manifold as synonyms. When a hyperplane includes the origin we

may remark the fact that it represents a linear subspace.

2 Introduction to Polarity Theory

This section is devoted to detail aspects of projective geometry in Rn, with

a specific attention to study algebraic hypersurfaces in homogeneous coordi-

nates. Within this last class of geometric entities, quadratics have attractive

properties which play a key role in this work, in order to exploit iterative meth-

ods for the solution of symmetric linear systems (see also [19–21] for further

references).

2.1 Homogeneous Coordinates in Rn

Cartesian coordinates (y1, . . . , yn) ∈ Rn define a one–to–one map between real

n–tuples and finite points in Rn. In order to handle a simple algebra, including

both points with finite coordinates and points at infinity, the homogeneous

coordinates (x1 : · · · : xn : x0) can be introduced, so that

yi =
xi
x0
, i = 1, . . . , n, (1)

where xi ∈ R, i = 0, . . . , n, are n+ 1 finite values.
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 7

Proposition 2.1 Let us consider the relation ‘∼’ on the set Rn+1 \ {0}, as

defined by

(x1, . . . , xn, x0) ∼ (x̂1, . . . , x̂n, x̂0)

iff

(x̂1, . . . , x̂n, x̂0) = ρ(x1, . . . , xn, x0)

for some real value ρ 6= 0. Then, ‘∼’ is an equivalence relation and the point

(x1 : · · · : xn : x0) ∈ Pn represents the equivalence class

{ρ(x1, . . . , xn, x0) : ρ ∈ R \ {0}}.

In other words, the homogeneous coordinates define the projective space Pn

as a one–to–one map between points (possibly at infinity) in Rn and points

(ρx1 : · · · : ρxn : ρx0) in Pn, where ρ 6= 0, provided that (x1, · · · , xn, x0) 6= 0.

2.2 Basics on Polarity for Algebraic Hypersurfaces

Let ϕ(x1, . . . , xn, x0) be a homogeneous polynomial of degree r ∈ N, then we

say that the locus of points of Pn satisfying

F :
{

(x, x0)T ∈ Pn : ϕ(x1, . . . , xn, x0) = 0
}

(2)

is an algebraic hypersurface of order r.

Definition 2.1 Given the algebraic hypersurface (2) of order r ≥ 1, in homo-

geneous coordinates, consider the point (pole) P = (x̄1 : · · · : x̄n : x̄0) ∈ Pn.

Then, the equation

n∑
i=0

∂ϕ(x1, . . . , xn, x0)

∂xi
x̄i = 0 (3)
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8 Giovanni Fasano, Raffaele Pesenti

Fig. 1 The (blue) continuous line represents the hypersurface with equation ϕ(x1, x2, x0) =

x31 − x2x20 = 0, while the (red) dashed line is its polar hypersurface (3), in Cartesian co-

ordinates. (left) The pole (x̄, 1)T ∈ P2, where x̄ = (3, 0)T ∈ R2, does not belong to the

hypersurface; (right) the pole (w̄, 1)T ∈ P2, where w̄ = (3, 27)T ∈ R2, belongs to the hyper-

surface.

represents an algebraic hypersurface of order r − 1, which is said to be the

first polar (or polar) of the point P with respect to the hypersurface (2), in

homogeneous coordinates.

Figure 1 helps to detail the geometry behind (2) (blue continuous line) and (3)

(red dashed line), being ϕ(x1, x2, x0) = x3
1 − x2x

2
0 = 0. In particular, Figure 1

(left) describes the case in which the pole (x̄, 1)T ∈ P2, where x̄ = (3, 0)T ∈ R2,

is not a point of F , while in Figure 1 (right) the point (w̄, 1)T ∈ P2, where

w̄ = (3, 27)T ∈ R2, belongs to F .

We immediately realize that in case ϕ(x1, . . . , xn, x0) = 0 is a quadratic

hypersurface (i.e. r = 2 and ∂ϕ(x1, . . . , xn, x0)/∂xi is linear) then we have

from (3)

n∑
i=0

∂ϕ(x1, . . . , xn, x0)

∂xi
· x̄i =

n∑
i=0

∂ϕ(x1, . . . , xn, x0)

∂xi

∣∣∣∣
xi=x̄i

· xi = 0. (4)
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 9

Using a standard taxonomy, the algebraic hypersurface (2) is often ad-

dressed as the 0–th polar (of any point in Pn, with respect to itself), while the

first polar of the point P ∈ Pn with respect to (2), when r = 2, is often called

the polar hyperplane of P .

We report here two of the essential results for polarity, where we focus on

(quadratic) hypersurfaces of order r = 2.

Theorem 2.1 [Reciprocity Theorem] Consider the algebraic hypersurface

(2) of order r = 2 and the points P, Q ∈ Pn. If the polar hyperplane of P with

respect to (2) passes through Q, then the polar hyperplane of Q with respect to

(2) passes through P .

Theorem 2.2 [Section Theorem] Consider the algebraic hypersurface (2)

of order r ≥ 1. Let Vd be a linear space of dimension d ≤ n, such that F̄ =

F ∩Vd and F̄ 6= Vd. For every point P ∈ Vd, the section by Vd of the first polar

of P (with respect to (2)) coincides with the first polar of P with respect to F̄ .

An example of the geometry behind the Reciprocity Theorem is detailed in

Figure 2 (left), where for simplicity n = 2 and hyperplanes are represented by

lines: the point P is the pole of `′2 with respect to F , while the dashed lines

by P admit as poles their intersections with the line `′2.

The definition of polarity, along with the fact that the gradient of ϕ in (2)

is well–defined, implies that, if a finite point P satisfies (2) and r = 2, then

the polar (i.e. the polar hyperplane) of P with respect to (2) coincides with

the tangent hyperplane of (2) in P . On the other hand, Theorem 2.2 allows

the definition of polar hyperplane also for points at infinity, where the tangent
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10 Giovanni Fasano, Raffaele Pesenti

hyperplane (in Cartesian coordinates) does not exist. In this regard, the next

(simplified) definition and the subsequent result (whose proof can be found

in [19]) clarify the taxonomy of points.

Definition 2.2 Given the algebraic hypersurface (2) of order r ≥ 1 and a

point P ∈ Pn in homogeneous coordinates, we say that P is self–conjugate

with respect to (2), if P belongs to its first polar with respect to (2).

In particular, it follows that, if the point P is self–conjugate and r = 2, then its

polar hyperplane coincides with the tangent hyperplane of ϕ(x1, . . . , xn, x0) =

0 in P . Moreover, we have the following result.

Proposition 2.2 Given the algebraic hypersurface (2) and a point P ∈ Pn,

P is self–conjugate if and only if P satisfies (2), i.e. P belongs to the algebraic

hypersurface (2).

3 Polarity and the Geometry Behind Conjugacy

In this section, we study some basics of polarity for quadratic hypersurfaces [19,

21], in the homogeneous coordinates projective space Pn. Given a symmetric

matrix A = {aij} ∈ Rn×n, a vector b = (b1, . . . , bn)T ∈ Rn, and a scalar c ∈ R,

we consider the reference symmetric linear system

Ay = b, (5)

and as a reference quadratic functional

g(y) =
1

2
yTAy − bT y + c. (6)
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 11

Initially, we associate a quadratic hypersurface F to g, in the corresponding

Pn homogeneous coordinates projective space. To this end, we observe that g

can be associated to the functional f : Pn → R in homogeneous coordinates

defined, for x0 6= 0, by

f(x1, . . . , xn, x0) = g

(
x

x0

)
=

1

2

n∑
i=1

n∑
j=1

aij

(
xi
x0

)(
xj
x0

)
−

n∑
i=1

bi

(
xi
x0

)
+ c,

(7)

where x = (x1, . . . , xn)T . In turn, the functional f(x1, . . . , xn, x0) can be as-

sociated with the quadratic hypersurface

F := {(x, x0)T ∈ Pn : f(x, x0)x2
0 = 0}

≡ {(x, x0)T ∈ Pn : xTAx− 2x0b
Tx+ 2cx2

0 = 0}. (8)

Hereinafter, the symbol F will always indicate the quadratic hypersurface

in (8). Moreover, the next assumption will hold throughout the paper with

the exception of a few highlighted results.

Assumption 3.1 Given the nonsingular symmetric matrix A ∈ Rn×n, the

vector b ∈ Rn and the scalar c in (8), the next two equivalent conditions hold:

– matrix  A −b

−bT 2c

 ∈ R(n+1)×(n+1)

is nonsingular;

– we have 2c− bTA−1b 6= 0.

Under Assumption 3.1, F in (8) has a finite centre and is nondegenerate,

so that polarity identifies a one–to–one correspondence between points and
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12 Giovanni Fasano, Raffaele Pesenti

hyperplanes in the space of homogeneous coordinates [22] (see also Figure 4).

Indeed, invoking the duality principle, we can consider the projective space Pn

and the dual space (Pn)
∗

of hyperplanes corresponding to points in Pn (using

the dual map in Definition 2.1, which associates the hyperplane of equation (3)

to the point P ). Then, if Assumption 3.1 holds, the dual map is nondegenerate,

and the set of all the dual hyperplanes of the points of F in (8) coincides with

its closure (i.e. the dual variety of F – see also [23]).

We note that the transformation y = x/x0 makes the hyperplane at infinity

x0 = 0 (in homogeneous coordinates) correspond to the locus of all the points

at infinity of Rn. Then, we can use the hypersurface F to study the proper-

ties of g at points at infinity. To this end, we introduce some definitions and

propositions concerning F that will prove to be useful for a complete analysis.

Definition 3.1 Given F and the points (x∗, x∗0)T , (x̄, x̄0)T ∈ Pn:

– (x̄, x̄0)T is the pole of the hyperplane π̄ if π̄ is the first polar hyperplane

of (x̄, x̄0)T with respect to F ;

– the pole (x∗, x∗0)T of the hyperplane x0 = 0 is the centre of F ;

– the hyperplanes through the centre (x∗, x∗0)T of F are the diametral hy-

perplanes of F ;

– the lines through the centre (x∗, x∗0)T of F are the diameters of F .

Let us stress that a finite centre for F can be defined only in case Assump-

tion 3.1 holds. We also observe that, by the Reciprocity Theorem (Theo-

rem 2.1), the diametral hyperplanes of F are polar hyperplanes of points at
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 13

infinity, i.e. the pole of a diametral hyperplane is a point at infinity whose

coordinates satisfy the equation x0 = 0.

Definition 3.2 Two diametral hyperplanes π1 and π2 of F are conjugate,

if πi contains the pole of πj , for i, j ∈ {1, 2}, i 6= j.

Definitions 3.1 and 3.2 imply that, if π1 and π2 are conjugate diametral hyper-

planes, then the pole of π1 is one of the points at infinity of π2 and vice versa.

Figure 2 (left) presents the simple geometry behind polarity for quadratic hy-

persurfaces. The point P is the pole of the hyperplane (i.e. line, since n = 2)

`′2. In particular, `′2 is obtained joining the tangency points of lines from P

to F . With a similar construction the point at infinity (d1, 0)T of `1 repre-

sents also the pole of `2, being parallel the tangent lines from (d1, 0)T to F .

As a consequence, `1 contains the pole of `2. A similar analysis also holds for

Figure 2 (right), in the indefinite case. It can be noticed that the vector d1 is

parallel to `1 and that, as n = 2, the line `2 may be also seen as a diametral

hyperplane whose pole is (d1, 0)T .

Definition 3.3 Given F :

– two diameters `1 and `2 of F are conjugate if the point at infinity (di, 0)T ∈

Pn of `i, i ∈ {1, 2}, is the pole of a (diametral) hyperplane which contains

`j , j ∈ {1, 2}, for i 6= j. Two lines `1 and `2 are conjugate, if they are

respectively parallel to conjugate diameters.

– a diametral hyperplane π1 is conjugate to the diameter `2 if any line

contained in π1 is conjugate to `2. A hyperplane π1 is conjugate to the line
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14 Giovanni Fasano, Raffaele Pesenti

Fig. 2 Conjugate lines `1 and `2 with respect to the quadratic hypersurface F in (8),

characterized by a positive definite matrix A (left) and an indefinite matrix A (right).

`2 if π1 and `2 are respectively parallel to a diametral hyperplane and a

diameter that are conjugate.

We point out that Definition 3.3 may sound unusual. In the literature (see,

e.g., [19]), lines `1 and `2 are addressed as conjugate if the polar hyperplanes of

all the points (not just of the point at infinity) of `1 include lines parallel to `2

and vice versa. However, this latter definition and Definition 3.3 are equivalent.

Indeed, let π3 be the polar hyperplane of the point at infinity of the diameter

`1 (see Figure 3). Simple geometric considerations prove that `1 and `2 are

conjugate according to Definition 3.3 (i.e. `2 ∈ π3). Hence, all the points on

the line `1 are the poles of hyperplanes parallel to π3. This fact is represented

in Figure 3, where a 3–dimensional quartic F and the polar hyperplanes of

three points of `1 are depicted. There, π1 is the polar hyperplane of the point

P1 of tangency between F and π1; π2 is the polar hyperplane of a generic point

P2 ∈ `1; π3 is the polar hyperplane of (d1, 0)T , i.e. the point at infinity of `1. As

the three hyperplanes π1, π2 and π3 are parallel, π1 and π2 certainly include
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 15

Fig. 3 Polar hyperplanes of points on the line `1, with respect to F . π3 is the polar hy-

perplane of (d1, 0)T , π2 is the polar hyperplane of P2 and π1 is the polar hyperplane of

P1.

lines parallel to `2 ∈ π3. Finally, we highlight that the results in Figure 3

(which refer to n = 3), can be similarly obtained when n = 2, as in Figure 2

(left).

4 Basic Practical Consequences of Conjugacy

In this section, we show that the geometric concept of conjugacy of lines has an

immediate algebraic counterpart, involving the directional cosines of the lines.

This fact will be useful to address some properties of CG–based methods in

Sections 5–7.

Proposition 4.1 Two lines `1 and `2 are conjugate with respect to F if and

only if

dT1 Ad2 = 0, (9)
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16 Giovanni Fasano, Raffaele Pesenti

where (d1, 0)T and (d2, 0)T are points at infinity of respectively `1 and `2.

Proof The polar hyperplane of (d1, 0)T ∈ `1, with respect to F , is given by the

diametral hyperplane whose points (x, x0)T ∈ Pn satisfy

2(Ax− bx0)T d1 = 0 (10)

(see relation (4)). Thus, by Definition 3.3, the line `2 is conjugate to `1 if and

only if the point at infinity (d2, 0)T satisfies (10), i.e. (9) holds. ut

The above proposition highlights how the geometric concept of conjugacy

between lines `1 and `2 simply depends on the matrix A in (8), regardless of

the choice of the vector b and the scalar c in F . The algebraic counterpart (9)

of the geometric concept of conjugacy has also an additional equivalent charac-

terization. Indeed, in case A � 0 relation (9) shows that the conjugacy between

`1 and `2 is equivalent to impose the orthogonality condition 〈d1, d2〉A = 0,

being 〈·, ·〉A the inner product induced by A. As a consequence, in case A = In

then the conjugacy between `1 and `2 reduces to the orthogonality condition

dT1 d2 = 0.

Definition 4.1 Two vectors d1 ∈ Rn and d2 ∈ Rn are conjugate vectors

with respect to F , if (9) holds.

We highlight that the proof of the next proposition indicates a simple but rel-

evant property: namely, given a direction d ∈ Rn, the vector Ad is orthogonal

to any direction conjugate to d. We will use this fact later on in the paper

(Proposition 6.2).
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Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 17

Proposition 4.2 Consider a line ˆ̀ with point at infinity (d̂, 0)T . Then, a hy-

perplane π is conjugate to ˆ̀, with respect to F , if and only if any line contained

in π is conjugate to ˆ̀. Moreover, π is parallel to the polar hyperplane of (d̂, 0)T .

Proof The first part of the proposition trivially follows from Definition 3.3.

To prove the second part of the proposition, consider the polar hyperplane of

(d̂, 0)T , i.e. the hyperplane whose points (x, x0)T ∈ Pn satisfy (Ax− bx0)T d̂ =

0. Let ` be a generic line in this hyperplane. Then ` can be expressed as the

locus of the points (x̄, x̄0)T + λ(d, 0)T for all λ ∈ R, where (x̄, x̄0)T is a point

of ` and (d, 0)T is the point at infinity of `. As ` is in the polar hyperplane of

(d̂, 0)T , then

[A(x̄+ λd)− bx̄0]
T
d̂ = 0 ⇐⇒ (Ax̄− bx̄0)T d̂+ λ(Ad)T d̂ = 0, ∀λ ∈ R,

and hence λ(Ad)T d̂ = 0, because (x̄, x̄0)T ∈ π. Consequently, ` is conjugate to

ˆ̀ by Proposition 4.1. ut

In the next proposition, we state the relation between the centre of F and

the solution of the symmetric linear system Ay = b.

Proposition 4.3 [Equivalence of centre] Consider the quadratic hyper-

surface F with centre (x∗, x∗0)T and let Assumption 3.1 hold. Then x∗0 =

1/(4c − 2bTA−1b) and the vector v∗ = (x∗/x∗0) is the unique solution of the

linear system Ay = b.

Proof We first observe that, by definition the hyperplane x0 = 0 is the polar

of (x∗, x∗0)T with respect to F . Thus, by (4) we have that the hyperplane

n∑
i=0

∂ϕ(x1, . . . , xn, x0)

∂xi

∣∣∣∣
xi=x∗

i

· xi = 0
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18 Giovanni Fasano, Raffaele Pesenti

must coincide with x0 = 0, i.e.,

∂ϕ(x1, . . . , xn, x0)

∂xi

∣∣∣∣
xi=x∗

i

=


0 for i = 1, . . . , n,

1 for i = 0.

(11)

Recalling that by (8) we have ϕ(x1, . . . , xn, x0) = xTAx− 2x0b
Tx+ 2cx2

0, we

obtain that (11) is equivalent to

 2A −2b

−2bT 4c


x∗

x∗0

 =

 0

1

 . (12)

By Assumption 3.1 the coefficient matrix in (12) is nonsingular. Hence, it

admits a unique solution (x∗, x∗0)T with x∗0 = 1/(4c − 2bTA−1b) by Rouché-

Capelli Theorem.

Finally, the first n equations of (12) imply Ax∗ = bx∗0, that is (x∗/x∗0) =

A−1b. Hence, v∗ = x∗/x∗0 is the unique solution of Ay = b. ut

Let us here briefly comment the hypotheses in Proposition 4.3. The non–

singularity of matrix A implies that the coefficient matrix in (12) has rank

greater than or equal to n. Hence, hypersurface F is irreducible [19], i.e. it

contains at most a double point and cannot degenerate into a pair of hyper-

planes. However, this hypothesis alone would not prevent F from being a cone

or a cylinder (see Figure 4). The additional hypothesis c 6= 1/2bTA−1b in As-

sumption 3.1 implies x∗0 6= 0, and hence ensures that the centre of F is not

a point at infinity. This fact, along with the non–singularity of A guarantees

that F can be only an ellipsoid or a hyperboloid or a paraboloid.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 19

Fig. 4 Degenerate quadratic hypersurface F in (8) (cone or cylinder), when the coefficient

matrix A in (12) has full rank n and exactly one double point P exists (i.e. c = 1/2bTA−1b).

5 A Basis of Conjugate Directions: the Positive Definite Case

In this section, we report some additional results that hold as long as the

matrix A in the hypersurface F , defined in (8), is positive definite. In the

spirit of this paper, the proofs of these results will rely on geometric properties

suggested by polarity, instead of invoking algebraic arguments.

Proposition 5.1 [Existence of n conjugate lines, case A � 0] Consider

the quadratic hypersurface F and let Assumption 3.1 hold, with A � 0. Then,

there exist n conjugate lines `j, j = 1, . . . , n, with respect to F . These lines

are also linearly independent.

Proof Note that by Assumption 3.1 and since A � 0, then F is a real hy-

perellipsoid which does not include points at infinity. Then, in the proof we

consider a simplified expression of F . Indeed, under the nonsingular linear

transformation  x

x0

 =

 In A−1b

0 1


 x̂

x̂0

 , (13)
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20 Giovanni Fasano, Raffaele Pesenti

we can transform F into

F̂ :=
{

(x̂, x̂0)T ∈ Pn :

(x̂+A−1b · x̂0)TA(x̂+A−1b · x̂0)− 2x̂0b
T (x̂+A−1b · x̂0) + 2cx̂2

0 = 0
}
,

i.e. we obtain the simplified expression

F̂ =
{

(x̂, x̂0)T ∈ Pn : f̂(x̂1, . . . , x̂n, x̂0) = 0,

f̂(x̂1, . . . , x̂n, x̂0) = x̂TAx̂+ (2c− bTA−1b)x̂2
0

}
,

(14)

whose centre (x̂∗, x̂∗0)T is

x̂∗ = 0 x̂∗0 =
1

4c− 2bTA−1b
. (15)

Now we carry on the proof by induction and we first compute the n lines ˆ̀
j ,

with j = 1, . . . , n. Then, by the inverse transformation of (13) we will obtain

the conjugate lines `j , with j = 1, . . . , n.

Base case. Consider the line ˆ̀
1, with point at infinity (d̂1, 0)T , and let π̂1

be the polar hyperplane of (d̂1, 0)T with respect to F̂ . In case n = 1 the proof

is over. Otherwise, we recursively define the remaining n − 1 conjugate lines

ˆ̀
j , with j = 2, . . . , n. To this end, the hyperplane π̂1 is an (n−1)–dimensional

hyperplane and includes the point (0, x̂0)T , being x̂0 6= 0.

Indeed, by (4) and since (x̂∗, x̂∗0)T ≡ (0, 1/(4c− 2bTA−1b))T , we have

π̂1 :=

(x̂, x̂0)T ∈ Pn :

n∑
i=0

∂f̂(x̂1, . . . , x̂n, x̂0)

∂x̂i

∣∣∣∣∣
(d̂1,0)T

x̂i = 0

 ,

which is equivalent to

π̂1 = {(x̂, x̂0)T ∈ Pn : d̂T1 Ax̂ = 0}. (16)
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Then, we show that (d̂1, 0)T 6∈ π̂1. Since the (symmetric) matrix A is not sin-

gular, it easily follows from (15) that (d̂1, 0)T 6∈ π̂1. Moreover, Proposition 4.2

implies that ˆ̀
1 is conjugate to any line contained in π̂1.

Induction step. For i = 1, . . . , j−1, we denote by π̂i, the (n−1)–dimensional

polar hyperplane of (d̂i, 0)T with respect to F̂ , i.e. π̂i = {(x̂, x̂0)T ∈ Pn :

d̂Ti Ax̂ = 0}. Also, we denote by Π̂j−1 the following [n− (j − 1)]–dimensional

hyperplane

Π̂j−1 =

j−1⋂
i=1

π̂i.

Then, we introduce ˆ̀
j as an arbitrary line in Π̂j−1, being (d̂j , 0)T its point at

infinity and π̂j the polar hyperplane of (d̂j , 0)T .

We observe that also π̂j is a (n− 1)–dimensional diametral hyperplane of

F̂ , since (d̂j , 0)T is a point at infinity. As a consequence, we can deduce that

(d̂j , 0)T 6∈ π̂j by repeating for π̂j the same reasoning which yielded (16). We

also observe that the Section Theorem 2.2 guarantees that the intersection

π̂j ∩ Π̂j−1 is a (n − j)–dimensional hyperplane which is conjugate to both

ˆ̀
j and all the lines ˆ̀

i, for i = 1, . . . , j − 1. Finally, we note that the line ˆ̀
j

cannot be obtained as a linear combination of the lines contained in π̂j , since

(d̂j , 0)T 6∈ π̂j .

The arguments above prove that we can iterate the recursion step n − 1

times, i.e. for j = 2, 3 . . . , n, so that n − 1 = dim(Π̂1) > dim(Π̂2) > · · · >

dim(Π̂n−1) = 0, and the conjugate lines ˆ̀
1, . . . , ˆ̀

n are linearly independent.

Thus, using backwards the transformation (13), we obtain n lines `j , j =
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1, . . . , n, with points at infinity {(dj , 0)T }, satisfying

dj

0

 =

 In A−1b

0 1


 d̂j

0

 , j = 1, . . . , n.

The latter equalities yield dj ≡ d̂j , j = 1, . . . , n, which implies that also

`1, . . . , `n are conjugate and linearly independent. ut

As a natural consequence, we can use the above proposition to easily pro-

vide an alternative proof of the following well–known result from the literature:

the solution of the positive definite linear system Ay = b can be computed

starting from any point ȳ ∈ Rn, provided that up to n conjugate directions

are given.

6 A Basis of Conjugate Directions: the Indefinite Case

In this section, we extend the results presented in the previous section to the

case of matrix A indefinite. These contents may appear a step away from

the case, where the CG can be applied and is well–posed. However, as we

already pointed out, in several optimization frameworks the CG is applied to

solve indefinite linear systems accepting the risk of possible failures. In this

context, we explain why an extension to the projective space of homogeneous

coordinates is mandatory, in order to describe possible CG failures in the

indefinite case. Indeed, we show that using finite points in Rn, as those usually

generated by the CG, does not allow to grasp CG possible degeneracy.
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To this end, we first denote by C∞ the intersection between the hyperplane

at infinity x0 = 0 and the hypersurface F , i.e.

C∞ :=
{

(x, 0)T ∈ Pn : xTAx = 0
}
. (17)

Then, we introduce the following definitions.

Definition 6.1 The asymptotic cone of the hypersurface F , with finite

centre, is the set of all the lines connecting the centre of F and any point of

C∞.

An immediate consequence of the above definition is that, if the centre (x∗, x∗0)T

of F is finite, in Cartesian coordinates the equation of the asymptotic cone of

F is given by

1

2

(
y − x∗

x∗0

)T
A

(
y − x∗

x∗0

)
= 0. (18)

Indeed, we note that equation (18) is homogeneous in (y − x∗/x∗0), so that it

is a cone, and that the line ` = {y ∈ Rn : x∗/x∗0 + λd, λ ∈ R} belongs to the

asymptotic cone of F if and only if dTAd = 0.

Definition 6.2 A direction d ∈ Rn \ {0} is auto–conjugate with respect to

the hypersurface F with finite centre, if the point at infinity (d, 0)T belongs

to the asymptotic cone of F , i.e. dTAd = 0.

The taxonomy in Definition 6.2 aims at avoiding confusion with self–

conjugate points, introduced in Definition 2.2. A relation exists between the

two concepts as, by Definition 2.2, the polar hyperplane π of the point (d, 0)T ,

such that dTAd = 0, is tangent to F in (d, 0)T , inasmuch as (d, 0)T also
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24 Giovanni Fasano, Raffaele Pesenti

belongs to F . Figure 5 (left) illustrates the latter fact: the dashed lines are

auto-conjugate (with respect to F) and are tangent to F in points at infinity.

These points are self-conjugate with respect to F .

Relation (18) and Definition 6.2 indicate that the hypersurface C∞ is what

really matters in order to identify the asymptotic cone of F . In this section,

we see that the possible degeneracy of the CG in the indefinite case only deals

with the points (at infinity) in C∞. In Section 7, we will prove that when the

auto–conjugate direction d ∈ Rn \ {0} is computed by the CG in Cartesian

coordinates, then equivalently the point (d, 0)T ∈ Pn is indirectly generated

in homogeneous coordinates. For this point at infinity, we will prove that the

polar hyperplane is defined while no tangent hyperplane exists.

Definitions 6.1 and 6.2 imply that if A � 0 the quadratic hypersurface F

has no real (as opposed to ‘complex’) auto–conjugate directions, since C∞ = ∅.

On the other hand, if A is indefinite, auto–conjugate directions may exist.

For example, Figure 5 (left) shows the projection of the hypersurface F =

{(x, x0)T ∈ P2 : 4x2
1−3x2

2−x2
0 = 0} in the Cartesian space R2. Figure 5 (right)

shows the corresponding intersection between F and the hyperplane at infinity,

i.e. C∞ = {(x, 0)T ∈ P2 : 4x2
1 − 3x2

2 = 0}, in the homogeneous coordinate

projective space P2. In this latter context, d1 = (
√

3, 2)T and d2 = (
√

3,−2)T

are the two auto–conjugate directions in R2.

In the next proposition, conditions such that F admits auto–conjugate

directions are given, which is a relevant result when investigating CG–based

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 25

Fig. 5 (left) The quadratic hypersurface F = {(x, x0)T ∈ P2 : 4x21 − 3x22 − x20 = 0} (in

Cartesian coordinates), and (right) the intersection between F and the hyperplane at infinity,

i.e. the hypersurface C∞ = {(x, 0)T ∈ P2 : 4x21 − 3x22 = 0} (in homogeneous coordinates).

methods in the indefinite case. We also remark that the Assumption 3.1 is

unnecessary to prove both the next proposition and the subsequent corollary.

Proposition 6.1 [Conjugate and auto–conjugate directions] Consider

the quadratic hypersurface F with finite centre and A indefinite. Then:

1. if A is nonsingular, the asymptotic cone of F cannot contain pairs of di-

rections that are both conjugate and auto–conjugate;

2. if A is singular, the asymptotic cone of F may possibly contain an infinite

number of directions that are both conjugate and auto–conjugate.

Proof We preliminarily note that if two conjugate directions d1 and d2 are

auto–conjugate with respect to F , then any of their linear combination αd1 +

βd2 is also auto–conjugate with respect to F . Indeed, if dT1 Ad2 = 0 and

dT1 Ad1 = dT2 Ad2 = 0, then for any α, β ∈ R we have

(αd1 + βd2)TA(αd1 + βd2) = α2dT1 Ad1 + β2dT2 Ad2 + 2αβdT1 Ad2 = 0. (19)
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26 Giovanni Fasano, Raffaele Pesenti

The above fact implies that if the conjugate directions d1 and d2 are auto–

conjugate with respect to F , then C∞ in (17) must also include the linear

manifold span{d1, d2}. Using a similar argument, we can prove that, if any

two conjugate directions d1 and d2 are auto–conjugate with respect to F ,

then any pair of directions linear combinations of d1 and d2 are conjugate

with respect to F .

We also observe that C∞ is the set of the auto–conjugate directions with

respect to F , and that C∞ includes a linear manifold only if A is singular.

This latter fact is trivially verifiable, as an example, by observing that if A is

nonsingular, then C∞ is a regular hypersurface and each point in C∞ corre-

sponds to a different gradient vector. On the contrary, when A is singular all

the points z = w+n, where w ∈ C∞ and n ∈ Ker(A), belong to C∞ and have

the same gradient 2Aw.

Given the above observation, we can derive those two cases considered in

the problem statement: Case 1. A is nonsingular, so that C∞ cannot include a

hyperplane (i.e., C∞ cannot degenerate into the product of two hyperplanes).

Thus, if the directions d1 and d2 are auto–conjugate with respect to F , then

they cannot be conjugate as span{d1, d2} 6⊆ C∞.

Case 2. A is singular, C∞ includes at least a linear manifold π, possibly of

dimension 1. So, by definition of C∞, given a pair of conjugate directions d1

and d2 on π, they are also auto–conjugate with respect to F . Finally, if a pair

of conjugate directions d1 and d2 on π exists, then any linear combination of

d1 and d2 belongs to π by (19). ut
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An example of the latter result is provided by the hypersurface F =

{(x, x0)T ∈ P2 : 4x2
1 − 3x2

2 − x2
0 = 0} in Figure 5, where

A =

 4 0

0 −3

 .

The two directions in R2 d1 = (
√

3, 2)T and d2 = (
√

3,−2)T , though auto–

conjugate, are not conjugate, being dT1 Ad2 = 24 6= 0.

Though it is beyond the purposes of this paper, the following result can

be used in order to justify that some CG–based methods from the litera-

ture (namely Planar–CG methods [4–7]) for indefinite linear systems are well–

posed.

Corollary 6.1 Consider the quadratic hypersurface Fwith finite centre and

A indefinite nonsingular. Consider also two directions d1, d2 ∈ Rn. If (d1, 0)T

and/or (d2, 0)T belong to the asymptotic cone of F and d1 is not conjugate to

d2, then

(dT1 Ad1)(dT2 Ad2)− (dT1 Ad2)2 6= 0.

Proof The result follows immediately from Proposition 6.1 and Definitions 6.1

– 6.2, as (dT1 Ad1)(dT2 Ad2) = 0 and dT1 Ad2 6= 0. ut

We conclude this section with a result similar to the one stated in Propo-

sition 5.1, but referred to the case of matrix A indefinite and nonsingular.

Once again, the proof is entirely based on geometric properties suggested by

polarity.

Proposition 6.2 [Existence of n − 1 conjugate lines, case A indefi-

nite] Consider the quadratic hypersurface F with A indefinite and let Assump-
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28 Giovanni Fasano, Raffaele Pesenti

tion 3.1 hold. Then, there exist n linearly independent lines `i, i = 1, . . . , n,

such that at least n− 1 of these lines are also conjugate with respect to F .

Proof Preliminarily, we note that by Proposition 4.3 the centre (x∗, x∗0)T of

F is finite. Hence, similarly to Proposition 5.1, we can apply without loss

of generality the linear transformation in (13) to F , in order to obtain the

simplified hypersurface F̂ in (14), with centre (x̂∗, x̂∗0)T in (15). Then, we

carry on the proof by induction, recursively defining the lines ˆ̀
i, i = 1, . . . , n.

In the end, we compute the lines `i, i = 1, . . . , n, from ˆ̀
i, i = 1, . . . , n.

Base case. Consider the line ˆ̀
1 with point at infinity (d̂1, 0)T , and the

corresponding polar hyperplane π̂1 (which includes the centre of F̂). In case

n = 1 the proof is over. Otherwise, if ˆ̀
1 is not in the asymptotic cone of F̂ the

proof proceeds by construction as the proof of Proposition 5.1, until possibly a

line ˆ̀
i, 1 ≤ i ≤ n, in the asymptotic cone of F̂ is detected. In case the latter line

does not exist, then the directions ˆ̀
1, . . . , ˆ̀

n are linearly independent and also

conjugate. Finally, the proposition is proved using again the transformation

(13) and retrieving the vectors d1, . . . , dn as in Proposition 5.1, i.e. computing

`1, . . . , `n.

Induction step. Let ˆ̀
i be a line in the asymptotic cone of F̂ , being (d̂i, 0)T

its point at infinity. The polar hyperplane π̂i of (d̂i, 0)T is

π̂i :=
{

(x̂, x̂0)T ∈ Pn : (2Ax̂)T d̂i + 2(2c− bTA−1b)x̂0 · 0 = 0
}
,

i.e. (similarly to (16))

π̂i :=
{

(x̂, x̂0)T ∈ Pn : d̂Ti Ax̂ = 0
}
. (20)
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As ˆ̀
i is in the asymptotic cone of F̂ , then d̂Ti Ad̂i = 0 and (d̂i, 0)T ∈ π̂i. Let

now d̂i+1 ∈ Rn be any vector satisfying the following properties:

– d̂i and d̂i+1 are linearly independent but not conjugate;

– d̂i+1 is conjugate to d̂1, . . . , d̂i−1 (i.e. d̂i+1 is orthogonal to Ad̂1, . . . , Ad̂i−1,

being d̂Ti+1Ad̂j = 0, j = 1, . . . , i− 1).

Recalling Proposition 6.1 and that i < n, we prove that such a vector surely

exists and does not belong to π̂i (since otherwise by (20) d̂i and d̂i+1 would

be conjugate). Indeed, it suffices to set

d̂i+1 = βi,0Ad̂i +

i∑
j=1

βi,j d̂j , βi,0 6= 0, (21)

observing that Ad̂i is orthogonal to d̂i (see also the comment to Proposi-

tion 4.2), with d̂Tj Ad̂j 6= 0, j = 1, . . . , i− 1, and compute {βi,j} such that

d̂Ti+1Ad̂j = 0, j = 1, . . . , i− 1, i.e. βi,j = −βi,0
(Ad̂i)

T (Ad̂j)

d̂Tj Ad̂j
. (22)

The computation of βi,j in (22) is well–posed since d̂1, . . . , d̂i−1 are not in

the asymptotic cone of F̂ . Thus, (21)–(22) yield the conjugacy of d̂i+1 with

d̂1, . . . , d̂i−1. Moreover, since (Ad̂i)
T d̂j = 0, j = 1, . . . , i, by (21) d̂Ti+1Ad̂i =

βi,0‖Ad̂i‖2 6= 0, proving that d̂i+1 and d̂i are linearly independent but not

conjugate.

The proof proceeds by following the guidelines of the proof of Proposi-

tion 5.1. We can thus compute the polar hyperplane π̂i+1 of the point (d̂i+1, 0)T ,

with respect to F̂ , which includes the point (0, x̂0)T , being x̂0 6= 0. Indeed,

since (x̂∗, x̂∗0)T ≡ (0, 1/(4c − 2bTA−1b))T then π̂i+1 = {(x̂, x̂0)T ∈ Pn :

d̂Ti+1Ax̂ = 0}. By the Section Theorem 2.2 the intersection of π̂i+1 and π̂i
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provides a (n− 2)–dimensional hyperplane which is conjugate to d̂1, . . . , d̂i−1.

Finally, by this proposition hypotheses and Proposition 6.1, there cannot be

two conjugate lines in the asymptotic cone of F̂ . Thus, we can generate the

remaining d̂i+2, d̂i+3, . . . , d̂n directions as in Proposition 5.1.

On the overall, the n−1 directions d̂1, . . . , d̂i, d̂i+2, . . . , d̂n are conjugate by con-

struction, and by (21)–(22) the n directions d̂1, . . . , d̂n are linearly independent.

Finally, using again the nonsingular transformation (13), as for Proposition 5.1

we can obtain the lines `i, i = 1, . . . , n, with points at infinity {(di, 0)T }, such

that di = d̂i, i = 1, . . . , n, which completes the proof. ut

Remark 6.1 Proposition 6.1 and Proposition 6.2 substantially ensure that even

in case the matrix A is indefinite, though nonsingular, at least (n− 1) conju-

gate directions exist. Among these directions no more than one can be auto–

conjugate. The latter simple conclusion is noteworthy, since one of the most

used methods in the literature which generates conjugate directions (namely

the CG method), may fail in the indefinite case, because it can iteratively yield

auto–conjugate lines. The item 1. in Proposition 6.1 ensures that the latter

fact can occur at most once during the execution of the CG method, even in

case A is indefinite.

To better comment the last remark, the following considerations have been

formulated. To the best of the authors’ knowledge, the literature of the CG

method based on the use of algebraic arguments has not given any results yet

on the frequency of possible CG degeneracies in the nonsingular indefinite case.

Such a fact is not surprising, since in the literature the main focus is often on

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 31

the CG performance in practice, exploiting the current iteration rather than

analyzing the whole CG method within a general framework. On the contrary,

Proposition 6.1 states that a geometric standpoint behind the CG indicates at

most one possible degeneracy among all the iterations it can possibly perform.

This also suggests another remarkable result, which will be more evident after

introducing the CG in Table 1. Indeed, let the solution of a sequence of linear

systems be sought (which is a typical problem from constrained numerical

optimization), where the nonsingular matrix A remains unchanged and the

recursion of the CG method is applied starting from a given (arbitrary) initial

point y0 = ȳ ∈ Rn. Then, in case a degeneracy occurs when solving the h–th

linear system of the sequence, we can slightly perturb the point ȳ so that by

Proposition 6.1 in none of the remaining linear systems the CG experiences a

degeneracy.

The above remark also justifies the frequent use of the CG–based meth-

ods, on large indefinite linear systems, like those arising in optimization frame-

works. In these cases, in order to provide gradient–related directions, a fast

approximate solution of the linear system is often required. Here, CG–based

methods, may be preferred to more sophisticated and well–posed, but more

computationally burdensome, techniques.
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7 Polar and Tangent Hyperplanes: from Homogeneous to Cartesian

Coordinates

In this section, we recast specific aspects of the standard CG method from the

perspective of polarity theory. Specifically, we consider the case in which the

CG method is used for solving the linear system Ay = b in the Cartesian space

Rn, when A � 0. Our aim is to show that in this situation polarity theory gives

an easy geometric interpretation of the steps of the CG. This interpretation

turns out to be useful also in providing a general theoretical framework, when

the matrix A is indefinite, and then the CG is not well–posed.

Throughout this section, as previously done we consider the linear system

Ay = b and the quadratic hypersurface F in Pn (see (8)), but also the asso-

ciated quadratic functionals g(y) in Rn and f(x, x0) in Rn+1, as respectively

defined in relations (6) and (7).

Table 1 reports the standard CG method. We can note that, when A � 0,

the standard CG method solves the linear system Ay = b by computing a

sequence of points yk, k = 1, . . . ,m, m ≤ n, along with a sequence of m linearly

independent conjugate vectors {pk}. The method iteratively generates these

vectors by imposing that at each Step k the condition pTkApj = 0, for j < k, is

satisfied. A similar result holds for the generalized class of CG–based methods

proposed in [16].

The next three results show that the polar hyperplane of a point in homo-

geneous coordinates has an equivalent counterpart in Cartesian coordinates.

In particular, note that Lemma 7.1 and Corollary 7.1 refer to the polar hyper-
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The standard Conjugate Gradient method

Input: y0 ∈ Rn.

Step 0: Set k = 0, r0 = b− Ay0.

If r0 = 0, then STOP. Else, set p0 = r0; k = k + 1.

Set p−1 = 0 and β−1 = 0.

Step k: Compute αk−1 = rTk−1pk−1/p
T
k−1Apk−1,

yk = yk−1 + αk−1pk−1, rk = rk−1 − αk−1Apk−1.

If rk = 0, then STOP. Else, set

– βk−1 = ‖rk‖2/‖rk−1‖2, pk = rk + βk−1pk−1, k = k + 1,

– (or equivalently set pk = −αk−1Apk−1 + (1 + βk−1)pk−1 − βk−2pk−2)

Go to Step k.

Output: {pk} and {yk}.

Table 1 The standard CG method for solving the linear system Ay = b [24].

plane of a finite point, whereas Corollary 7.2 refers to the polar hyperplane of

a point at infinity.

Lemma 7.1 [Equivalence with Polar Hyperplane 1] Consider the qua-

dratic hypersurface F in (8), the quadratic functional g(y) in (6), and relation

y = x/x0 between Cartesian coordinates y ∈ Rn and homogeneous coordinates

(x, x0)T ∈ Pn. Let (x∗, x∗0)T be the centre of F . Then, the first polar π of

a finite point P = (x̄, x̄0)T 6= (x∗, x∗0)T , x̄0 6= 0, with respect to F has the

following expression in Cartesian coordinates

π :=

{
y ∈ Rn : 2g(ȳ) +

n∑
i=1

∂g(ȳ1, · · · , ȳn)

∂yi
(yi − ȳi) = 0

}
. (23)

Proof First note that x0 = 0 cannot be the polar hyperplane of P , since

P 6= (x∗, x∗0)T . Hence, hereinafter, together with x̄0 6= 0, we can assume that
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x0 6= 0 and consider finite points.

The following relations hold given y = x/x0 and the chain rule:

∂f(x1, · · · , xn, x0)

∂xi
=
∂g(y1, · · · , yn)

∂yi
· ∂yi
∂xi

=
∂g(y1, · · · , yn)

∂yi
·
(

1

x0

)
, i = 1, . . . , n. (24)

Then, using equation (4) and relation

∂f(x, x0)

∂x0
= −∇xf(x, x0)T

(
x

x0

)
,

we can write the first polar of the point (x̄, x̄0)T as:{
(x, x0)T ∈ Pn :

∑n
i=0

∂[2f(x̄,x̄0)x̄2
0]

∂xi
xi = 0

}
≡{

(x, x0)T ∈ Pn :

2
[
∂f(x̄,x̄0)
∂x0

x̄2
0 + f(x̄, x̄0) · 2x̄0

]
x0 + 2

∑n
i=1

∂f(x̄,x̄0)
∂xi

x̄2
0xi = 0

}
≡{

(x, x0)T ∈ Pn :

2
[
−∇xf(x̄, x̄0)T x̄x̄0 + g(ȳ) · 2x̄0

]
x0 + 2x̄2

0∇xf(x̄, x̄0)Tx = 0
}
,

so that dividing by 2x̄0x0 6= 0 and using (24) we obtain for π the expression

{
(x, x0)T ∈ Pn : −∇g(ȳ)T ȳ + 2g(ȳ) +∇g(ȳ)T y = 0

}
. (25)

Finally, we note that (25) (in homogeneous coordinates) becomes (23) in Carte-

sian coordinates as y = x/x0. ut

The polar hyperplane (23) is a generalization of the tangent hyperplane to

an algebraic hypersurface. The result is formally detailed in the next corollary.

Corollary 7.1 Consider the quadratic hypersurface F in (8), the quadratic

functional g(y) in (6), and relation y = x/x0 between Cartesian coordinates

y ∈ Rn and homogeneous coordinates (x, x0)T ∈ Pn.
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1. Let (x∗, x∗0)T ∈ Pn be the centre of F . The first polar π in (23) of a finite

point P ≡ (x̄, x̄0)T 6= (x∗, x∗0)T , when expressed in Cartesian coordinates,

coincides with the tangent hyperplane to g(y) = 0 at ȳ = x̄/x̄0, if and only

if g(ȳ) = 0;

2. Let A be nonsingular and c 6= 1/2bTA−1b, then the set π in (23) is nonempty

if and only if Aȳ 6= b;

3. Let A be nonsingular and c = 1/2bTA−1b, then the set π in (23) is nonempty.

Proof As regards point 1., observe that if g(ȳ) = 0 then the tangent hyperplane

to g(y) = 0 at ȳ is unique, having the expression ∇g(ȳ)T (y− ȳ) = 0. The latter

equation coincides with (23) if and only if g(ȳ) = 0. As regards point 2., for

the sufficient condition, by (6) and (23) we have

π :=
{
y ∈ Rn : ȳTAȳ − 2bT ȳ + 2c+ (Aȳ − b)T (y − ȳ) = 0

}
(26)

≡
{
y ∈ Rn : (2c− bT ȳ) + (Aȳ − b)T y = 0

}
.

Thus, if Aȳ 6= b then the point

y =
bT ȳ − 2c

‖Aȳ − b‖2
(Aȳ − b) (27)

belongs to π, so that π is nonempty. Conversely, for the necessary condition,

let π be nonempty and assume by contradiction Aȳ = b. Then, (26) would

imply that the relation 0 = 2c−bT ȳ = 2c−bTA−1b holds for any y ∈ Rn \{0},

in contradiction with the assumption c 6= 1/2bTA−1b.

As regards point 3., we distinguish between the two cases: Aȳ = b and Aȳ 6= b.

In the first case π ≡ Rn. In the second case, again the vector in (27) belongs

to π. ut
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36 Giovanni Fasano, Raffaele Pesenti

Fig. 6 The geometry, in Cartesian coordinates, behind the polar hyperplane π in (23). ȳ is

the pole of π, while the point z is given by z = ȳ − 2g(ȳ)/‖∇g(ȳ)‖2∇g(ȳ).

The Figure 6 depicts (in Cartesian coordinates) the geometry behind the

first polar π in (23). Here consider the hypersurface g(y) = 0, along with the

tangent hyperplane ∇g(ȳ)T (y − ȳ) = 0 to g(y) = g(ȳ) at ȳ. Then, observe

that π is parallel to the latter hyperplane and contains the point z = ȳ −

2g(ȳ)/‖∇g(ȳ)‖2∇g(ȳ).

The next corollary defines the first polar of points at infinity, and will

represent an essential tool to study the possible CG degeneracy in the indefinite

case.

Corollary 7.2 [Equivalence with Polar Hyperplane 2] Consider the

quadratic hypersurface F in (8), the quadratic functional g(y) in (6), and

relation y = x/x0 between Cartesian coordinates y ∈ Rn and homogeneous

coordinates (x, x0)T ∈ Pn. Let (x∗, x∗0)T be the centre of F . Then, the first

polar π of the point at infinity (p̄, 0)T , p̄ ∈ Rn, with respect to F , has the

following expression in Cartesian coordinates

π :=
{
y ∈ Rn : ∇g(y)T p̄ = 0

}
. (28)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 37

Fig. 7 A graphical description in Rn of the general iteration of the CG, for A � 0 and

n = 2.

If A is nonsingular, then the hyperplane π is nonempty.

Proof The proof follows immediately from Definition 2.1 and (24). ut

We now observe that, for ȳ ∈ Rn such that g(ȳ) = 0, the equation that

describes the polar hyperplane π both in (23) and in (28) is equivalent to the

Ritz–Galerkin condition

∇g(ȳ)T (y − ȳ) = 0, (29)

imposed by the standard CG–based methods at point ȳ ∈ Rn [2]. Indeed,

in Table 1, at Step k, the coefficient αk−1 is chosen by imposing the Ritz–

Galerkin condition 0 = rTk rk−1 = rTk pk−1, i.e. ∇g(yk)T (yk − yk−1) = 0. Then,

given βk, the new conjugate direction pk is determined using rk and pk−1. As

an example with n = 2, consider Figure 7. The ellipsoids in Rn represent level

sets of the function g(y) in (6). Starting from the point y the standard CG

method finds the new point ȳ, by setting ᾱ along the direction −∇g(y) so that

(29) is satisfied. Finally, note that (28) may easily reduce to (23) after setting

ȳ = x̄/x̄0 in (28), with x̄ = p̄ and x̄0 → 0.
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8 CG–based Methods and Polarity Theory: Advances

In this section, we further analyze the relation between polarity theory for

the quadratic functional g(y) in (6) and the CG method, in order to get some

advances.

For the ease of notation and without loss of generality, in the current and in

the following section we assume to have first performed the change of variables

y = ŷ − ỹ, ỹ = −A−1b, (30)

and hence (6) becomes

ĝ(ŷ) =
1

2
ŷTAŷ +

(
c− 1

2
bTA−1b

)
. (31)

Then, in (30) we re–denominate ŷ and ĝ as y and g, respectively. This allows

us to address the linear system Ay = 0, in place of (5).

As long as A is nonsingular, the linear transformation (30) leaves un-

changed the Hessian matrix, and the quadratic functional g(y) in (6) becomes

g(y) =
1

2
yTAy + ξ, ξ ∈ R. (32)

Then, if A � 0, y∗ = 0 is trivially the optimal solution of the linear sys-

tem Ay = 0 and coincides also with the ratio x∗/x∗0, being (x∗, x∗0)T ≡

(0,−1/(4γ))T the centre of the family (see Proposition 4.3, with c = −γ and

b = 0) of quadratic hypersurfaces (ellipsoids)

1

2
yTAy = γ, γ ≥ 0. (33)
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In homogeneous coordinates, the hypersurfaces (33) are described by the fol-

lowing quadratic homogeneous functions

Fγ :=

{
(x, x0)T ∈ Pn :

1

2
xTAx− γx2

0 = 0

}
. (34)

In this section:

– we prove that the standard CG method generates at any iteration k a hy-

perplane in Rn that is equivalent to a diametral hyperplane of Fγ , for some

γ > 0, in Pn. In particular, we show that the resulting diametral hyper-

plane has the point at infinity (pk, 0)T as a pole, being pk the conjugate

direction generated at the iteration k (see Table 1);

– we show that all the directions {pk}, generated by the standard CG method

in Rn, are parallel to lines contained in polar hyperplanes with respect to

different quadratic hypersurfaces Fγ , for some γ > 0, in Pn;

– we give evidence that the standard CG method generates at each iteration

a pair hyperplane–point in Rn. This pair hyperplane–point corresponds to

a pair polar hyperplane–pole in Pn, and the pole is a finite self–conjugate

point as in Definition 2.2;

– we provide a geometric motivation for the fact that, if A is indefinite non-

singular in (34), the standard CG method may fail to provide at current

iteration a diametral hyperplane of Fγ , for some γ > 0, in Pn.

Proposition 8.1 [CG – Polar Hyperplane 1] Let the standard CG method

perform m steps to solve the linear system Ay = 0, with A � 0. Then, for every
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40 Giovanni Fasano, Raffaele Pesenti

k < m the linear manifold

yk+1 + span{p1, . . . , pk−1, pk+1, . . . , pm}

represents in Cartesian coordinates a diametral hyperplane of the homogeneous

hypersurface Fγ in (34), for any γ > 0. This diametral hyperplane is the polar

hyperplane of the pole (pk, 0)T , with respect to Fγ , and can be written as

πk+1 = {y ∈ Rn : (Apk)T y = 0}.

Proof We observe that, at the (k + 1)–th iteration, the standard CG method

detects the minimum point yk+1 of g(y) along the line y = yk + αpk, where

pk is a suitable search direction and α ∈ R (see Table 1 or, for n = 3, Fig-

ure 8). In particular, the method determines the steplength αk by solving the

unconstrained problem

min
α

g(yk + αpk).

Hence, we have ∇g(yk + αkpk)T pk = 0, or equivalently

0 = ∇g(yk+1)T pk = (Ayk+1)T pk. (35)

On the other hand, for any γ > 0, the polar hyperplane πk+1 of (pk, 0)T

with respect to the hypersurface Fγ can be rewritten in Cartesian coordinates

as

πk+1 := {y ∈ Rn : pTkAy = 0}, (36)

by Corollary 7.2. In fact, explicitly computing the polar (diametral) hyperplane

of the point (pk, 0)T , with respect to Fγ , we obtain{
(x, x0)T ∈ Pn : (Apk)Tx+ (−2γ · 0)x0 = 0

}
≡{

(x, x0)T ∈ Pn : (Apk)Tx = 0
}
,
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which indeed yields (36) in Cartesian coordinates. Thus, by the Reciprocity

Theorem the latter hyperplane contains the centre (x∗, x∗0)T ≡ (0,−1/(4γ))T

of Fγ . Hence, πk+1 in (36) contains x∗/x∗0 = 0 and is equivalently a diametral

hyperplane (in Cartesian coordinates) of Fγ . Furthermore, the ellipsoid g(y) =

γ, for any γ > 0, intersects the hyperplane πk+1 into an (n − 2)–dimensional

ellipsoid (see also the contours of the shaded areas in Figure 8, where G2

represents an ellipse).

It remains to show that the manifold yk+1+span{p1, . . . , pk−1, pk+1, . . . , pm}

satisfies equation (36). Indeed, by simple substitution in (36) and recalling (35)

we have

(Apk)T [yk+1 + span{p1, . . . , pk−1, pk+1, . . . , pm}] =

(Apk)T [span{p1, . . . , pk−1, pk+1, . . . , pm}] = 0,

where the last equality follows from the conjugacy among the m vectors

{p1, . . . , pm}, generated by the CG. ut

Proposition 8.2 [CG – Polar Hyperplane 2] Let the standard CG method

perform m steps to solve the linear system Ay = 0, with A � 0. Then, at

Step k, k < m, the standard CG method generates a hyperplane in Cartesian

coordinates equivalent to the polar hyperplane of the point yk, with respect to

the quadratic hypersurface Fγk , γk = 1/2yTk Ayk. This hyperplane has equation

π̃k :=
{
y ∈ Rn : (Ayk)T (y − yk) = 0

}
(37)

and contains the line yk−1 + αpk−1, α ∈ R.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



42 Giovanni Fasano, Raffaele Pesenti

Fig. 8 A detail of the geometry of the (k+1)–th CG iteration: the hyperplane πk+1 (which

includes the span of the directions pk+1 and pk+2) is conjugate to direction pk, with respect

to g(y) = γk+1, γk+1 = 1/2yTk+1Ayk+1.

Proof Let us consider Step k in Table 1 (for n = 3, see Figure 9). From point

yk−1, the standard CG method moves along pk−1 and determines the new

point yk on a hyperplane π̃k, which is tangent to g(y) = 1/2yTk Ayk at yk.

Thus, the hyperplane π̃k has equation in Cartesian coordinates

(Ayk)T (y − yk) = 0. (38)

Since yk ∈ π̃k is finite, Definition 2.2 guarantees that π̃k represents (in Carte-

sian coordinates) the polar hyperplane of the pole (xk, x0k)T , where yk =

xk/x0k, x0k 6= 0, with respect to Fγk , and γk = 1/2yTk Ayk. Indeed, as

Fγk :=

{
(x, x0)T ∈ Pn :

1

2
xTAx− γkx2

0 = 0, γk =
1

2
yTk Ayk

}
, (39)

the polar hyperplane of the pole (xk, x0k)T is given by

(Axk)Tx− 2γkxk0x0 = 0. (40)
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As for x0k 6= 0, x0 6= 0, y = x/x0, then the equivalence between (38) and (40)

holds. When y = yk−1 + αpk−1, α ∈ R, the equation (38) yields

(Ayk)T pk−1 = 0, (41)

showing that π̃k contains the line yk−1 + αpk−1, α ∈ R, which completes the

proof. ut

8.1 CG Iterations and CG Failure: a Geometric Viewpoint

Here we preliminarly show how the CG iterations can be rewritten in terms

of polarity; then, we present a geometric motivation of the CG failure when

A is indefinite. To this end, we recall that y∗ = 0 is a solution of Ay = 0, by

(30)–(31) and therein comments. Hence, unless the standard CG method has

reached the very last iteration, the direction pk computed at Step k has the

extremes which are both nonzero.

In the following, we consider the polar hyperplane πk (see also Figure 9)

of (pk−1, 0)T , with respect to Fγk , both written in homogeneous coordinates

πk :=
{

(x, x0)T ∈ Pn : (Apk−1)Tx− 2γk · 0 · x0 = 0
}

≡
{

(x, x0)T ∈ Pn : (Apk−1)Tx = 0
}
,

and in Cartesian coordinates (see also Corollary 7.2)

πk := {y ∈ Rn : (Apk−1)T y = 0}. (42)

The representation of πk in Cartesian coordinates allows one to conclude that

πk includes the origin. The representation of πk in homogeneous coordinates
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44 Giovanni Fasano, Raffaele Pesenti

allows to use Proposition 4.2, showing that πk has the pole (pk−1, 0)T , with

respect to Fγk , and contains all the directions conjugate to the vector pk−1.

We also consider in homogeneous coordinates the manifold Vd ⊂ Pn

Vd :=
{

(x, x0)T ∈ Pn : aTx = 0, a ∈ Rn \ {0}
}
,

and the quadratic hypersurface

F̄ := Fγk ∩ Vd =


xTAx− 2γkx

2
0 = 0

aTx = 0.

We note that the polar hyperplane of (xk, xk0)T ∈ F̄ with respect to Fγk

has equation (Axk)Tx − 2γkxk0x0 = 0, and the intersection ` between the

latter hyperplane and the manifold Vd is given by

` :=


(Axk)Tx− 2γkxk0x0 = 0

aTx = 0.

The Section Theorem guarantees that ` also coincides with the polar hyper-

plane of (xk, xk0)T with respect to F̄ . Thus, the point (xk, xk0)T ∈ F̄ satisfies

xTkAxk − 2γkx
2
k0 = 0

(Axk)Tx− 2γkxk0x0 = 0
∣∣
(x,x0)T =(xk,xk0)T

aTxk = 0.

(43)

In order to understand how the above concepts are of interest for the stan-

dard CG method, let us consider again Figure 9. The hyperplane πk contains
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the centre of g(y) = γk and is therefore both a diametral hyperplane in Rn

and a subspace. Then consider the linear manifold `, i.e. the intersection be-

tween πk (polar hyperplane of (pk−1, 0)T ) and the tangent hyperplane π̃k to

g(y) = 1/2yTk Ayk at yk = xk/xk0. Now, ` is equivalent in Rn to the polar

hyperplane of the point yk with respect to the hypersurface Γk (contour of the

shaded area in Figure 9), which is the intersection between g(y) = γk and πk,

i.e.

Γk :


g(y) = γk, where γk = 1

2y
T
k Ayk,

y ∈ πk.

(44)

The above observation implies that the k–th iteration of the standard CG

method can be simply analyzed in terms of the linear manifold ` and the

(n − 1)–dimensional hyperplane πk (which is sketched also in Figure 10). It

also implies that

πk := yk + span{p1, . . . , pk−2, pk, . . . , pm},

being p1, . . . , pk−2, pk, . . . , pm conjugate to pk−1. In particular, note that at

Step k the standard CG method computes the residual rk orthogonal to π̃k

(and hence also orthogonal to `), and defines a vector pk linearly independent

from p1, . . . , pk−1 and belonging to πk.

These facts allow to focus, at Step k of the standard CG method, only on

πk, Γk and `. I.e., Step k of the standard CG method can be rewritten only

in terms of πk, Γk and `, as in Figure 10, without any explicit reference to
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directions p1, . . . , pk−1. In Figure 10 one can see the conjugate directions pk

and pk+1 generated at both the k–th and the (k + 1)–th iteration.

As a general achievement, we can equivalently conclude that the (k+1)–th

iteration of the standard CG method can be described by limiting the analysis

to the hyperplane πk in (42) and the hypersurface Γk in (44). This is partially

summarized in the next corollary to Propositions 8.1 and 8.2.

Corollary 8.1 Let the standard CG method perform m steps to solve the lin-

ear system Ay = 0, with A � 0. Then, at Step k, k ≤ m, the polar hyperplane

of (pk−1, 0)T , with respect to g(y) = γk, includes the point yk, and is conjugate

to pk−1.

Proof First observe that Proposition 8.1 implies that the polar hyperplane πk

of (pk−1, 0)T , with respect to g(y) = γk, satisfies (Apk−1)T y = 0. Recall that

this last equation defines the locus of all the conjugate directions to pk−1.

Then, πk coincides with z + span{p1, . . . , pk−2, pk, . . . , pm}, where z is such

that (Apk−1)T z = 0. Consequently, the proof follows immediately from the

proof of Propositions 8.1 and 8.2, since (41) imposes

(Apk−1)T yk = (Ayk)T pk−1 = 0,

which implies that yk ∈ πk. ut

The next proposition proposes a geometric insight of the standard CG

method failure (also addressed as pivot breakdown in the literature [2]), in case

the matrix A is indefinite. In particular, it turns out to be useful in explaining

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces 47

Fig. 9 An application (in Cartesian coordinates) of Section Theorem, within the k–th CG

iteration: we have yk−1 ∈ π̃k. The direction pk−1 is conjugate to the hyperplane πk; π̃k

represents in Cartesian coordinates the polar hyperplane of yk with respect to g(y) = γk.

Fig. 10 The (k + 1)–th iteration of the CG reduces to analyze the (n − 1)–dimensional

hyperplane πk of Figure 9.

why the method may fail to generate a further search direction, when a line

in the asymptotic cone (see Definition 6.1) of Fγ is detected.

Proposition 8.3 [CG – Failure] Let the standard CG method solve the lin-

ear system Ay = 0, with A indefinite nonsingular. Suppose that at Step k the

CG computes the vector pk satisfying pTkApk = 0, i.e. the point at infinity

(pk, 0)T belongs to the asymptotic cone of Fγ in (34), for some γ > 0. Then,
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(i) the point (pk, 0)T belongs to its polar hyperplane with respect to Fγ and is

self–conjugate with respect to Fγ ;

(ii) pk belongs to the span of all the directions conjugate to pk.

Proof We prove (i) by observing that the intersection between the asymptotic

cone of Fγ in (34) and the hyperplane at infinity x0 = 0 is given by {(x, 0)T ∈

Pn : xTAx = 0}. Then, by the hypotheses, (pk, 0)T is also a point of Fγ .

Proposition 2.2 and Definition 2.2 guarantee that (pk, 0)T is self–conjugate

with respect to Fγ , and it satisfies the equation of its polar hyperplane πk+1 =

{(x, x0)T ∈ Pn : (Apk)Tx− 2γ · 0 · x0 = 0} since

(Apk)T pk = pTkApk = 0.

As regards (ii), we observe that πk+1 is the locus of all the points (d, 0)T ∈ Pn

such that d and pk are conjugate as in (4). Hence pk is in the span of its

conjugate directions. ut

Let us remark that, if the point (pk, 0)T satisfies the equation of the asymp-

totic cone of the quadratic hypersurface Fγ , then nevertheless pk might be

appealing as a direction along which to search the centre of the hypersurface.

Unfortunately, the standard CG method gets stuck if this direction is gen-

erated, since it is unable to compute a suitable finite steplength along it. In

addition, we highlight that item (i) in the previous proposition does not imply

also that the point (xk, x0k)T , with yk = xk/x0k, is in the asymptotic cone

of Fγ . Indeed (i) in general implies the situation depicted in Figure 11 (left),

where (pk, 0)T ∈ C∞, but the point yk does not satisfy equation (18). Figure 11

(right) gives a graphical representation of item (ii) of Proposition 8.3. In the
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Fig. 11 A failure of the standard CG method when the matrix A is indefinite, in Cartesian

coordinates. (left) The point (pk, 0)T in homogeneous coordinates belongs to the asymptotic

cone of Fγ , for any γ. (right) When the current direction pm generated at Step m of the

CG approaches the asymptotic cone of Fγ (i.e. pTmApm ≈ 0), for some γ, then the angle

between pm and pm+1 tends to zero.

case that Step m provides a direction pm in the asymptotic cone of Fγ (i.e.

pTmApm = 0), then a direction pm+1 can not be generated since it would be

parallel to pm, unlike ph+1 or pk+1 at points (respectively) Pk and Ph.

Finally, Proposition 8.3 may have a dramatic impact in optimization frame-

works. Indeed, we recall that whenever A � 0, the standard CG method itera-

tively computes gradient–related directions with respect to the functional g(y).

Specifically, at Step k, the following condition holds∇g(yk)T pk ≤ −ε1‖∇g(yk)‖2

with ε1 > 0, and ‖pk‖ is bounded as long as ∇g(yk) 6= 0. As a consequence, pk

can be used within linesearch procedures of Armijo–type or Wolfe–type (see

for instance [9]), in order to guarantee global convergence properties. Differ-

ently, if A is indefinite and at Step k we have pTkApk ≈ 0, then the standard

CG method stops prematurely and pk+1 is no more generated, which claims
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for some adjustments in the optimization framework, in order to preserve con-

vergence properties (see e.g. [11]).

9 Perspectives

In this brief section, we suggest items which can represent issues of interest

for further research, where polarity may possibly play a key role. Since our

analysis in the previous sections follows a different perspective, with respect

to the current literature on CG–based methods, we conjecture that our hints

here can give the opportunity for novel discussions and investigations on well-

known topics.

– It may be worth exploring the possibility that the properties of polarity in

Sections 3 – 7 can lead to possible extensions of the Nonlinear Conjugate

Gradient (NCG) method (see [9]). In this regard there is the chance that in

the nonlinear case, not only the pairs polar hyperplane–point may play a

keynote role, but also the so called h–th polars [19] of points (with h > 1)

may be helpful. The h–th polar of an algebraic hypersurface can capture in

fact h–order information, which is unavailable in case the analysis includes

only polar hyperplanes.

– Polarity perspective may also provide some contribution in the definition

of possibly inexact linesearch procedures for NCG methods. Indeed, the

results of Lemma 7.1 suggest that in Cartesian coordinates the polar hy-

perplane of a point not only includes first order information (i.e. the gra-

dient of the function at the current iterate), but also information on the
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function value at that point. More specific linesearch procedures may rely

on this latter information.

– The proof of Proposition 8.3 guarantees that if in (8) the matrix A is indef-

inite, then the polar hyperplane of a point at infinity P in the asymptotic

cone is well-defined. On the contrary, we can not formally define at the lat-

ter point the tangent hyperplane in Cartesian coordinates. This suggests

that a possible failure of the CG, in case A is indefinite, might be possibly

recovered by suitably alternating homogeneous coordinates and Cartesian

coordinates in CG iterations. Indeed, by Proposition 8.3 a CG failure oc-

curs in case at Step k we have pTkApk = 0, i.e. pk is auto-conjugate with

respect to the quadratic hypersurface. Thus, from the definition of asymp-

totic cone, pk is in principle still a possible search direction, in order to

detect the centre of the hypersurface, by computing a suitable steplength.

Of course, since possibly yk in Table 1 does not satisfy equation (18), in

general in Cartesian coordinates the line yk + λpk, λ ∈ R, does not in-

clude the centre y∗ of F . Unfortunately, the CG is unable to compute

a finite steplength along pk (see also Figure 11), so that it stops prema-

turely. Nevertheless, an ad hoc inexact linesearch procedure along pk could

be conceived.

– The case when the CG detects a nearly auto-conjugate direction pk (i.e.,

such that pTkApk ≈ 0 but pTkApk 6= 0) represents another intriguing sce-

nario to theoretically investigate from a geometric standpoint. In fact, the
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latter case makes the CG well-posed but possibly numerically unstable (see

e.g. [25]).

– Finally, it is worth considering the role of polarity theory also to study

stationary points of cubic functions. They have recently gained the atten-

tion of the optimization community, due to their role within regularization

problems (see the seminal paper [26]).

10 Conclusions

In this paper, we have investigated the role of polarity in homogeneous co-

ordinates for quadratic hypersurfaces, in order to provide general tools for

CG–based methods, from a geometric perspective. We have presented both

the analytical properties and the geometric insight revealed by polarity, justi-

fying the fact that in CG–based methods n-dimensional vectors are typically

introduced, without recurring to homogeneous coordinates. Our use of polar-

ity in homogeneous coordinates has not required the quadratic hypersurface

in (8) to be an hyperellipsoid (i.e. A � 0). This allowed us to prove additional

general results, to treat indefinite linear systems. Moreover, we showed to what

extent the premature stop of the CG, in the indefinite case, is likely to be a

very rare event.
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