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Abstract Given a sequence of Borel probability measures on a Hausdorff space which
satisfy a large deviation principle (LDP),we consider the corresponding sequence ofmeasures
formed by conditioning on a set B. If the large deviation rate function I is good and effectively
continuous, and the conditioning set has the property that (1) B◦ = B and (2) I (x) < ∞
for all x ∈ B, then the sequence of conditional measures satisfies a LDP with the good,
effectively continuous rate function IB , where IB(x) = I (x) − inf I (B) if x ∈ B and
IB(x) = ∞ otherwise.
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1 Introduction

Conditional large deviation principles (LDPs) have played an important role in both math-
ematical statistics and statistical mechanics. In the latter field in particular, the asymptotic
behavior of conditional distributions has been studied since the time of Boltzmann [1,5] and
remains an important subject today in establishing the equivalence of microcanonical and
canonical ensembles [6,14]. Early work by Lanford [9] and Ruelle [13] had anticipated many
of the results regarding entropy and the thermodynamic limit which would later find form in
the mathematical theory of large deviations. More recently, large deviation techniques have
also been applied to nonequilibrium macroscopic time evolution [7,8].

Much of the past work on conditional LDPs has focused on distributions of sample means
or, equivalently, empirical measures for mutually independent and identically distributed
(IID) random variables. In this case, the conditioning set may be expressed as a constraint on
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the sample mean of IID random variables or, equivalently, as a constraint on the empirical
distribution directly. Stroock and Zeitouni [14], for example, have developed a theorem on
Gibbs conditioning, later revised inDemboandZeitouni [3],which establishes convergence in
probability for empirical measures conditioned on the sample mean of IID random variables.
Earlier, van Campenhout and Cover [15], using results from Zabell and Lanford, showed
explicitly that the marginals of a distribution conditioned on a particular value of the sample
mean converge to the canonical form predicted by the maximum entropy principle.

General conditional limit theorems have also been studied by Lewis et al. [10]. Casting
the work of Ruelle and Lanford into the language of large deviation theory, they show that for
a suitable sequence of conditioning sets, the corresponding conditional measures converge
asymptotically to a canonical or “tilted” (in the Varadhan sense) measure with respect to the
Kullback–Leibler information gain (Theorem 5.1). If the conditioning sets are assumed to be
convex, then an even stronger conclusion follows in which the conditional equilibrium points
may be determined from the subgradient of the free energy (Theorem 6.1). Their results fall
short of giving an LDP for the sequence of conditional measures, however, and it is this
problem which we address here.

In this paperwe develop a general conditional LDP in terms of an assumedLDPand a given
conditioning set. Suppose {Pn} is a sequence of Borel probability measures on a Hausdorff
topological space (X, T ) which satisfies a LDP with a good rate function I . Given a set
B ⊆ X for which inf I (B◦) < ∞, the large deviation lower bound implies that Pn(B) > 0
for all n sufficiently large. Without loss of generality, we may suppose that Pn(B) > 0 for
all n, so the sequence {Pn( · |B)} of conditional probability measures is well defined. Since
the minimum of the unconditioned rate function, I , gives the asymptotically most likely
value (or values) in X , we may anticipate that, under conditioning, the asymptotically most
likely values in B (or, more precisely, in B) will be those values that minimize I over B.
If this sequence of conditional measures is to have an LDP, however, then this minimum
must be zero, and this suggests that the conditional rate function, denoted IB , is given by
IB(x) = I (x) − inf I (B) for all x ∈ B. For consistency, IB(x) may be defined to be ∞
outside of B. Since inf I (B) ≤ inf I (B◦) and inf I (B◦) < ∞ by assumption, we see that IB
is indeed well defined.

The possible discrepancy between inf I (B◦) and inf I (B) is an inconvenience which may
be eliminated if reasonable regularity conditions are placed on B and I . Equality of inf I (B◦)
and inf I (B) of course holds for I -continuity sets, and this, in turn, holds if B◦ = B and I
is everywhere finite and continuous. (See Theorem 2 below.) The former condition is clearly
satisfied if B is open or, e.g., a closed ball in a metric space. Also, if B is a convex subset of a
normed linear space, then B◦ = B holds if B has a nonempty interior. This is a straightforward
extension of Theorem 6.3 in Rockafellar [12]. The utility of convex conditioning sets had
been recognized by Csiszár [2] in studying conditionally distributed empirical measures. The
condition that I be finite and continuous everywhere may be further relaxed by noting that
the latter condition is relevant only on the effective domain, DI = {x ∈ X : I (x) < ∞}, of
I . We shall say that a rate function is effectively continuous if it is continuous relative to
its effective domain. Convex rate functions on a Banach space, for example, are effectively
continuous, since DI is convex whenever I is convex (see, e.g., Roberts and Varberg [11], p.
112). With these considerations in mind, the main result may now be stated as follows:

Theorem 1 (Conditional LDP) Suppose {Pn} satisfies an LDP with a good rate function I
on a Hausdorff space X. Let B be a given Borel set for which B◦ = B and ∅ ⊂ B◦ ⊆ DI .
If I is continuous on B◦, then the sequence {Pn( · |B)} of conditional probability measures
satisfies an LDP with the good rate function
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A General Conditional Large Deviation Principle 125

IB(x) =
{
I (x) − inf I (B), if x ∈ B,

∞ otherwise.
(1)

This result is proved in Sect. 3. The restriction to Hausdorff spaces is needed to obtain a
good conditional rate function.

2 Auxilliary Rate Function Theorems

Before proving the conditional LDP theorem, a few general results regarding large deviation
rate functions are needed. We begin with the following theorem regarding continuous rate
functions. Throughout this section it is assumed that (X, T ) is a Hausdorff topological space.

Theorem 2 Let I be a good rate function which is continuous on an open set containing A.
If either A = ∅ or inf I (A) < ∞, then inf I (A) = inf I (A).

Proof If A = ∅ then I is trivially continuous on A and inf I (A) = ∞ = inf I (A). Now
suppose A �= ∅. Since I is a good rate function and A is closed, there exists at least one
xA ∈ A such that I (xA) = inf I (A). Since A ⊆ A and is nonempty, I (xA) ≤ inf I (A) < ∞.
Suppose I (xA) < inf I (A). Now letV = (−∞, inf I (A)) and note that, since I is continuous
and I (xA) ∈ V by assumption, there exists a neighborhood U of xA such that I (U ) ⊆ V .
Since xA ∈ A and U is a neighborhood of xA, there exists an xA ′ ∈ U ∩ A. Since xA ′ ∈ U ,
I (xA ′) ∈ V and hence I (xA ′) < inf I (A); however, since xA ′ ∈ A, I (xA ′) ≥ inf I (A). We
thus arrive at a contradiction and conclude that I (xA) = inf I (A) = inf I (A). �
Lemma 1 For any subsets A and B of a topological space, A◦ ∩ B ⊆ A◦ ∩ B.

Proof If A◦ ∩ B = ∅ then we are done, so suppose there exists an x ∈ A◦ ∩ B. We will have
x ∈ A◦ ∩ B if and only if for any neighborhood U of x we have that U ∩ (A◦ ∩ B) �= ∅.
Now, given U , U ∩ A◦ is also a neighborhood of x , then, since x ∈ B, it follows that
(U ∩ A◦) ∩ B �= ∅. �
Corollary 1 Let I be a good rate function which is continuous on A◦ ∩ B◦. If B◦ = B and
either A◦ ∩ B◦ = ∅ or inf I (A◦ ∩ B◦) < ∞, then inf I (A◦ ∩ B◦) = inf I (A◦ ∩ B).

Proof Since B = B◦ and A◦ ∩ B◦ ⊆ A◦ ∩ B◦ by Lemma 1, we have

inf I (A◦ ∩ B◦) ≥ inf I (A◦ ∩ B) = inf I (A◦ ∩ B◦) ≥ inf I (A◦ ∩ B◦) = inf I (A◦ ∩ B◦),

where the last equality follows from Theorem 2. �

3 Proof of Conditional Large Deviation Principle

Observe that the large deviation bounds imply that, for any ε > 0 and all n sufficiently large,

a−1
n log Pn(A) < −(1 − ε) inf I (A) for 0 < inf I (A) < ∞, (2)

a−1
n log Pn(A) > −(1 + ε) inf I (A◦) for 0 < inf I (A◦) < ∞, (3)

where {an} is an unbounded sequence of positive scale factors. Similarly, inf I (A) = ∞
implies Pn(A) = 0 for all n sufficiently large, while inf I (A◦) = 0 implies a−1

n log Pn(A) >

−ε for ε > 0 and all n sufficiently large. With these observations, we are now ready to prove
Theorem 1.
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Proof Since I is a good rate function which is continuous on B◦ and B◦ ⊆ DI , ∞ >

inf I (B◦) = inf I (B◦), by Theorem 2. Furthermore, since B◦ = B, inf I (B◦) = inf I (B) =
inf I (B). If inf I (B) > 0, then

−(1 + ε) inf I (B) < a−1
n log Pn(B) < −(1 − ε) inf I (B)

for ε > 0 and all n sufficiently large, while inf I (B) = 0 implies

−ε < a−1
n log Pn(B) ≤ −(1 − ε) inf I (B) = 0.

We begin with the large deviation upper bound. First assume 0 < inf I (A ∩ B) < ∞ and
inf I (B) > 0. For a given ε > 0 we have that for all n sufficiently large

a−1
n log Pn(A|B) = a−1

n log Pn(A ∩ B) − a−1
n log Pn(B)

< −(1 − ε) inf I (A ∩ B) + (1 + ε) inf I (B◦)
≤ − [

inf I (A ∩ B) − inf I (B)
] + ε

[
inf I (A ∩ B) + inf I (B)

]
= − inf IB(A) + ε

[
inf I (A ∩ B) + inf I (B)

]
As the second term is positive and may be made arbitrarily small, we conclude

lim sup
n→∞

a−1
n log Pn(A|B) ≤ − inf IB(A).

If 0 < inf I (A ∩ B) < ∞ yet inf I (B) = 0, then

a−1
n log Pn(A|B) < −(1 − ε) inf I (A ∩ B) + ε

≤ − inf IB(A) + ε
[
inf I (A ∩ B) + 1

]
and the upper bound is again found to hold.

If inf I (A ∩ B) = 0, then inf I (B) = inf I (B) ≤ inf I (A ∩ B) ≤ inf I (A ∩ B) = 0
and inf IB(A) = inf I (A ∩ B) − inf I (B) ≤ inf I (A ∩ B) − inf I (B) = 0. Since
a−1
n log Pn(A|B) ≤ 0 = − inf IB(A), the upper bound is clearly satisfied.
If inf I (A ∩ B) = ∞, then Pn(A|B) = 0 and a−1

n log Pn(A|B) = −∞ for all n suffi-
ciently large. Thus, lim supn→∞ a−1

n log Pn(A|B) = −∞ ≤ − inf IB(A).
For the large deviation lower bound, suppose 0 < inf I ((A∩ B)◦) < ∞ and note that for

all n sufficiently large,

a−1
n log Pn(A|B) > −(1 + ε) inf I ((A ∩ B)◦) + (1 − ε) inf I (B)

= − [
inf I (A◦ ∩ B◦) − inf I (B)

] − ε
[
inf I (A◦ ∩ B◦) + inf I (B)

]
= − inf IB(A◦) − ε

[
inf I (A◦ ∩ B◦) + inf I (B)

]
,

where Corollary 1 has been used in the last equality. The second term is negative and may
be made arbitrarily small, so we conclude

lim inf
n→∞ a−1

n log Pn(A|B) ≥ − inf IB(A◦).

If inf I (A◦ ∩ B◦) = 0, then inf I (B) = inf I (B) ≤ inf I (A◦ ∩ B) = inf I (A◦ ∩ B◦) = 0
and inf IB(A◦) = inf I (A◦ ∩ B) − inf I (B) = inf I (A◦ ∩ B◦) − inf I (B) = 0. However,
for any given ε > 0 and all n sufficiently large,

a−1
n log Pn(A|B) > −ε + (1 − ε) inf I (B) = −ε = − inf IB(A◦) − ε.

Thus, the lower bound is satisfied in this case.
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A General Conditional Large Deviation Principle 127

Finally, suppose inf I (A◦ ∩ B◦) = ∞. Since B◦ ⊆ DI , this implies A◦ ∩ B◦ = ∅. By
Corollary 1, inf IB(A◦) = inf I (A◦ ∩ B)− inf I (B) = inf I (A◦ ∩ B◦)− inf I (B) = ∞. But
since a−1

n log Pn(A|B) ≥ −∞ = − inf IB(A◦ ∩ B◦), the lower bound is clearly satisfied in
this case as well.

To complete the proof, wemust show that IB is a good, continuous rate function relative to
B. Effective continuity of IB follows from that of I . To show that IB is a good rate function,
consider any α < ∞ and note that

{x ∈ X : IB(x) ≤ α} = {
x ∈ B : I (x) − inf I (B) ≤ α

}
= {x ∈ X : I (x) ≤ α + inf I (B)} ∩ B.

We have already established that inf I (B) < ∞. As X is a Hausdorff space and I is a
good rate function, the above intersection is compact, thus establishing that IB is a good rate
function. �

4 Application to Joint Random Vectors

Let {(�n,Fn, Pn)}n∈N be a sequence of probability spaces and let {(Xn, Yn)}n∈N be a
sequence of Borel-measurable random vectors on �n taking values in R

d× R
d ′
. Suppose we

are interested in the asymptotic behavior of Yn when Xn is conditioned on a value x0 ∈ R
d .

Rather than condition on Xn = x0 explicitly, we shall instead consider the joint distribution
of (Xn, Yn) and construct a conditioning set for which Xn converges to x0 in probability.
Assuming an LDP for the joint distribution and using the conditional LDP theorem (Theorem
1), we will determine the value y0 corresponding to x0 to which Yn converges in probability
under this conditioning.

By the Gärtner–Ellis Theorem [3], the joint distribution of (Xn, Yn) will satisfy an LDP
if the free energy, � : R

d× R
d ′ → (−∞,∞], given by

�(λ1, λ2) = lim
n→∞

1

an
log

∫
�n

ean [λ1·Xn(ω)+λ2·Yn(ω)]dPn(ω) (4)

is well defined and everywhere finite and differentiable. Assuming this to be the case, the
rate function, I , is given by the Legendre-Fenchel transform of �, i.e.,

I (x, y) = λx · x + λy · y − �(λx , λy), (5)

where λx and λy are such that x = ∇1�(λx , λy) and y = ∇2�(λx , λy). (The mapping
(λx , λy) �→ (x, y) is invertible if the Jacobian of (∇1�,∇2�) exists everywhere and vanishes
nowhere, by the inverse function theorem; we shall assume this is indeed the case.) It follows
that I is a good, essentially strictly convex (hence, effectively continuous) rate function.
(See Ellis [4], Theorem VII.2.1.) As such, there is a unique point (x∗, y∗) for which the rate
function is zero and to which (Xn, Yn) converges in probability. In terms of the free energy,
note that x∗ = ∇1�(0, 0) and y∗ = ∇2�(0, 0). The effective domain of I will be denoted,
as usual, by DI .

To condition on x0, we consider a conditional LDP with a conditioning set B chosen so
that I has its infimum at a unique point (x0, y0) for some y0. Not all choices of x0 will
allow for a suitable conditioning set, as boundary points may be problematic. One way to
address this problem is to consider the LDP for Xn alone. By the contraction principle,
Xn satisfies an LDP with rate function IX ( · ) = I ( · , y∗) and corresponding free energy
�X ( · ) = �( · , 0). If we choose x0 ∈ ∇�X (Rd), then clearly there exists a λ0 ∈ R

d such
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128 B. R. La Cour, W. C. Schieve

that x0 = ∇�X (λ0) = ∇1�(λ0, 0). As we have assumed invertibility, λ0 is in fact uniquely
determined by x0. Now choose

B = {(x, y) ∈ DI : λ0 · (x − x0) ≥ 0} . (6)

Using the value of λ0 determined by x0, define y0 = ∇2�(λ0, 0) and note that, since
I (x0, y0) = λ0 · x0 + 0 · y0 − �(λ0, 0) < ∞, (x0, y0) ∈ DI . From its definition, B is
the intersection of the convex set DI with the affine half-space demarcated by the hyperplane
containing the point (x0, y0) and having a normal vector proportional to (λ0, 0) directed
towards its interior; thus, B is also convex.We shall now verify that the conditions of Theorem
1 do indeed hold.

We have already established that I is a good, effectively continuous rate function and its
domain is clearly Hausdorff, so it remains to verify the required conditions on B. Clearly B
is a convex set, and B◦ ⊆ B ⊆ DI . Due to the choice of x0 and the assumed continuity of
(∇1�,∇2�), B also has a nonempty interior, so the fact that it is convex implies B◦ = B.
This establishes the conditional LDP. It remains, then, to determine the corresponding rate
function, i.e., to compute inf I (B).

For (x, y) ∈ B we have that λ0 · x ≥ λ0 · x0, so
I (x, y) = λx · x + λy · y − �(λx , λy)

≥ [
λx · x + λy · y − �(λx , λy) − λ0 · x + �(λ0, 0)

] + I (x0, y0),

since λ0 · x − �(λ0, 0) ≥ λ0 · x0 − �(λ0, 0) = I (x0, y0). The expression in brackets is
nonnegative, since

λx · x + λy · y − �(λx , λy) = sup
λ1,λ2

[λ1 · x + λ2 · y − �(λ1, λ2)]

≥ λ0 · x + 0 · y − �(λ0, 0)

with equality if and only if (λx , λy) = (λ0, 0). Thus, I (x, y) ≥ I (x0, y0) for all (x, y) ∈ B,
and, since (x0, y0) ∈ B, we conclude that

inf I (B) = I (x0, y0) = λ0 · x0 − �(λ0, 0) (7)

with y0 = ∇2�(λ0, 0) and λ0 given by x0 = ∇1�(λ0, 0). This gives the desired conditional
rate function, from which it follows that (Xn, Yn) converges in probability to (x0, y0). Note
that, since B ⊆ DI is convex and I is essentially strictly convex, (x0, y0) is the unique point
in B at which I attains the minimum value inf I (B).

Note that this result continues to hold if the condition λ0 · (x − x0) ≥ 0 is replaced
with 0 ≤ λ0 · (x − x0) < δ, where δ > 0 is arbitrary. (In statistical mechanics, this
corresponds to a microcanonical distribution with a “thickened” energy shell.) Consequently,
while we do not condition on Xn = x0 precisely, we may restrict Xn to be arbitrarily close
to x0. The asymptotic value for Yn , i.e., y0, may be written in a more familiar form by
evaluating ∇2�(λ0, 0) explicitly. Since � is convex and we have assumed it to be finite and
differentiable, it follows from Theorem 25.7 of Rockafellar [12] that the convergence of the
gradients is uniform; hence,

y0 = ∇2�(λ0, 0) = lim
n→∞

∫
�n

Yn(ω) eanλ0·Xn(ω)dPn(ω)∫
�n

eanλ0·Xn(ω′)dPn(ω′)
, (8)

which is the familiar canonical expectation.
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A General Conditional Large Deviation Principle 129

Using the contraction principle one may obtain an explicit LDP for Yn |x0 , i.e., Yn condi-
tioned on λ0 · (Xn − x0) ∈ [0, δ). To do this, note that the projection map (x, y) �→ y is
continuous; hence, Yn |x0 satisfies an LDP with rate function

Ix0(y) = inf
{
IB(x ′, y′) : x ′ ∈ R

d , y′ = y
}

= inf
{
I (x ′, y) : x ′ ∈ R

d , λ0 · (x ′ − x0) ∈ [0, δ)
}

− inf I (B)

= I (x0, y) − λ0 · x0 + �(λ0, 0) (9)

for y ∈ R
d ′
. The last equality follows from an argument similar to that used to determine

inf I (B). From the properties of I it follows that Ix0 is a good, essentially strictly convex
rate function. Thus, the corresponding free energy, call it �x0 , is given by

�x0(λ) = sup
y∈Rd′

[
λ · y − Ix0(y)

]

= sup
y∈Rd′

[λ0 · x0 + λ · y − I (x0, y) − �(λ0, 0)]

= �(λ0, λ) − �(λ0, 0) (10)

for λ ∈ R
d ′
. The properties of finiteness and differentiability for �x0 follow from those of

� (or, more specifically, from those of �(λ0, · )), so the global minimum of Ix0 is attained
at ∇�x0(0) = ∇2�(λ0, 0) = y0, as expected. Note that Ix0 may also be written directly in
terms of �x0 via the relation

Ix0(y) = λ · y − �x0(λ). (11)
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