326 research outputs found
Seasonal variation of serotonin turnover in human cerebrospinal fluid, depressive symptoms and the role of the 5-HTTLPR.
Studying monoaminergic seasonality is likely to improve our understanding of neurobiological mechanisms underlying season-associated physiological and pathophysiological behavior. Studies of monoaminergic seasonality and the influence of the serotonin-transporter-linked polymorphic region (5-HTTLPR) on serotonin seasonality have yielded conflicting results, possibly due to lack of power and absence of multi-year analyses. We aimed to assess the extent of seasonal monoamine turnover and examined the possible involvement of the 5-HTTLPR. To determine the influence of seasonality on monoamine turnover, 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured in the cerebrospinal fluid of 479 human subjects collected during a 3-year period. Cosine and non-parametric seasonal modeling were applied to both metabolites. We computed serotonin (5-HT) seasonality values and performed an association analysis with the s/l alleles of the 5-HTTLPR. Depressive symptomatology was assessed using the Beck Depression Inventory-II. Circannual variation in 5-HIAA fitted a spring-peak cosine model that was significantly associated with sampling month (P=0.0074). Season of sampling explained 5.4% (P=1.57 × 10(-7)) of the variance in 5-HIAA concentrations. The 5-HTTLPR s-allele was associated with increased 5-HIAA seasonality (standardized regression coefficient=0.12, P=0.020, N=393). 5-HIAA seasonality correlated with depressive symptoms (Spearman's rho=0.13, P=0.018, N=345). In conclusion, we highlight a dose-dependent association of the 5-HTTLPR with 5-HIAA seasonality and a positive correlation between 5-HIAA seasonality and depressive symptomatology. The presented data set the stage for follow-up in clinical populations with a role for seasonality, such as affective disorders
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys
The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption
Lipids modulate the conformational dynamics of a secondary multidrug transporter
Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers
On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry
The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na+ for H+ ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves
BACH1 Ser919Pro variant and breast cancer risk
BACKGROUND: BACH1 (BRCA1-associated C-terminal helicase 1; also known as BRCA1-interacting protein 1, BRIP1) is a helicase protein that interacts in vivo with BRCA1, the protein product of one of the major genes for hereditary predisposition to breast cancer. Previously, two BACH1 germ line missense mutations have been identified in early-onset breast cancer patients with and without family history of breast and ovarian cancer. In this study, we aimed to evaluate whether there are BACH1 genetic variants that contribute to breast cancer risk in Finland. METHODS: The BACH1 gene was screened for germ line alterations among probands from 43 Finnish BRCA1/2 negative breast cancer families. Recently, one of the observed common variants, Ser-allele of the Ser919Pro polymorphism, was suggested to associate with an increased breast cancer risk, and was here evaluated in an independent, large series of 888 unselected breast cancer patients and in 736 healthy controls. RESULTS: Six BACH1 germ line alterations were observed in the mutation analysis, but none of these were found to associate with the cancer phenotype. The Val193Ile variant that was seen in only one family was further screened in an independent series of 346 familial breast cancer cases and 183 healthy controls, but no additional carriers were observed. Individuals with the BACH1 Ser919-allele were not found to have an increased breast cancer risk when the Pro/Ser heterozygotes (OR 0.90; 95% CI 0.70–1.16; p = 0.427) or Ser/Ser homozygotes (OR 1.02; 95% CI 0.76–1.35; p = 0.91) were compared to Pro/Pro homozygotes, and there was no association of the variant with any breast tumor characteristics, age at cancer diagnosis, family history of cancer, or survival. CONCLUSION: Our results suggest that the BACH1 Ser919 is not a breast cancer predisposition allele in the Finnish study population. Together with previous studies, our results also indicate that although some rare germ line variants in BACH1 may contribute to breast cancer development, the contribution of BACH1 germline alterations to familial breast cancer seems marginal
Paclitaxel inhibits growth, migration and collagen production of human Tenon's fibroblasts—potential use in drug-eluting glaucoma drainage devices
Comparisons of seven algorithms for pathway analysis using the WTCCC Crohn's Disease dataset
<p>Abstract</p> <p>Background</p> <p>Though rooted in genomic expression studies, pathway analysis for genome-wide association studies (GWAS) has gained increasing popularity, since it has the potential to discover hidden disease pathogenic mechanisms by combining statistical methods with biological knowledge. Generally, algorithms or programs proposed recently can be categorized by different types of input data, null hypothesis or counts of analysis stages. Due to complexity caused by SNP, gene and pathway relationships, re-sampling strategies like permutation are always utilized to derive an empirical distribution for test statistics for evaluating the significance of candidate pathways. However, evaluation of these algorithms on real GWAS datasets and real biological pathway databases needs to be addressed before we apply them widely with confidence.</p> <p>Findings</p> <p>Two algorithms which use summary statistics from GWAS as input were implemented in KGG, a novel and user-friendly software tool for GWAS pathway analysis. Comparisons of these two algorithms as well as the other five selected algorithms were conducted by analyzing the WTCCC Crohn's Disease dataset utilizing the MsigDB canonical pathways. As a result of using permutation to obtain empirical p-value, most of these methods could control Type I error rate well, although some are conservative. However, the methods varied greatly in terms of power and running time, with the PLINK truncated set-based test being the most powerful and KGG being the fastest.</p> <p>Conclusions</p> <p>Raw data-based algorithms, such as those implemented in PLINK, are preferable for GWAS pathway analysis as long as computational capacity is available. It may be worthwhile to apply two or more pathway analysis algorithms on the same GWAS dataset, since the methods differ greatly in their outputs and might provide complementary findings for the studied complex disease.</p
Which medical error to disclose to patients and by whom? Public preference and perceptions of norm and current practice
<p>Abstract</p> <p>Background</p> <p>Disclosure of near miss medical error (ME) and who should disclose ME to patients continue to be controversial. Further, available recommendations on disclosure of ME have emerged largely in Western culture; their suitability to Islamic/Arabic culture is not known.</p> <p>Methods</p> <p>We surveyed 902 individuals attending the outpatient's clinics of a tertiary care hospital in Saudi Arabia. Personal preference and perceptions of norm and current practice regarding which ME to be disclosed (5 options: don't disclose; disclose if associated with major, moderate, or minor harm; disclose near miss) and by whom (6 options: any employee, any physician, at-fault-physician, manager of at-fault-physician, medical director, or chief executive director) were explored.</p> <p>Results</p> <p>Mean (SD) age of respondents was 33.9 (10) year, 47% were males, 90% Saudis, 37% patients, 49% employed, and 61% with college or higher education. The percentage (95% confidence interval) of respondents who preferred to be informed of harmful ME, of near miss ME, or by at-fault physician were 60.0% (56.8 to 63.2), 35.5% (32.4 to 38.6), and 59.7% (56.5 to 63.0), respectively. Respectively, 68.2% (65.2 to 71.2) and 17.3% (14.7 to 19.8) believed that as currently practiced, harmful ME and near miss ME are disclosed, and 34.0% (30.7 to 37.4) that ME are disclosed by at-fault-physician. Distributions of perception of norm and preference were similar but significantly different from the distribution of perception of current practice (P < 0.001). In a forward stepwise regression analysis, older age, female gender, and being healthy predicted preference of disclosure of near miss ME, while younger age and male gender predicted preference of no-disclosure of ME. Female gender also predicted preferring disclosure by the at-fault-physician.</p> <p>Conclusions</p> <p>We conclude that: 1) there is a considerable diversity in preferences and perceptions of norm and current practice among respondents regarding which ME to be disclosed and by whom, 2) Distributions of preference and perception of norm were similar but significantly different from the distribution of perception of current practice, 3) most respondents preferred to be informed of ME and by at-fault physician, and 4) one third of respondents preferred to be informed of near-miss ME, with a higher percentage among females, older, and healthy individuals.</p
- …
