55 research outputs found

    Reconceptualizing Profit-Orientation in Management: A Karmic View on "Return on Investment" Calculations

    Get PDF
    From the perspective of the present day, Puritan-inspired capitalism seems to have succeeded globally, including in India. Connected to this, short-term profit-orientation in management seems to constrain the scope of different management approaches in a tight ideological corset. This article discusses the possibility of replacing this Puritan doctrine with the crucial elements of Indian philosophy: Karma and samsara. In doing so, the possibility of revising the guiding principles in capitalist management becomes conceivable, namely the monetary focus of profit-orientation and its short-term orientation. This perspective allows a detachment of the concept of profit from the realm of money, as the seemingly only objectifiable measure of profit. Furthermore it allows a removal of the expectation that every "investment" has to directly "pay off". A karmic view offers management a possible facility for being more caring about the needs and fates of other stakeholders, as profit-orientation would no longer be attached as a factual constraint to merely accumulate money. (author's abstract

    Phylogenetic and environmental context of a Tournaisian tetrapod fauna

    Get PDF
    The end-Devonian to mid-Mississippian time interval has long been known for its depauperate palaeontological record, especially for tetrapods. This interval encapsulates the time of increasing terrestriality among tetrapods, but only two Tournaisian localities previously produced tetrapod fossils. Here we describe five new Tournaisian tetrapods (Perittodus apsconditus\textit{Perittodus apsconditus}, Koilops herma\textit{Koilops herma}, Ossirarus kierani\textit{Ossirarus kierani}, Diploradus austiumensis\textit{Diploradus austiumensis} and Aytonerpeton microps\textit{Aytonerpeton microps}) from two localities in their environmental context. A phylogenetic analysis retrieved three taxa as stem tetrapods, interspersed among Devonian and Carboniferous forms, and two as stem amphibians, suggesting a deep split among crown tetrapods. We also illustrate new tetrapod specimens from these and additional localities in the Scottish Borders region. The new taxa and specimens suggest that tetrapod diversification was well established by the Tournaisian. Sedimentary evidence indicates that the tetrapod fossils are usually associated with sandy siltstones overlying wetland palaeosols. Tetrapods were probably living on vegetated surfaces that were subsequently flooded. We show that atmospheric oxygen levels were stable across the Devonian/Carboniferous boundary, and did not inhibit the evolution of terrestriality. This wealth of tetrapods from Tournaisian localities highlights the potential for discoveries elsewhere.NERC consortium grants NE/J022713/1 (Cambridge), NE/J020729/1 (Leicester), NE/J021067/1 (BGS), NE/J020621/1 (NMS) and NE/J021091/1 (Southampton

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders

    Stepwise oxygenation of the Paleozoic atmosphere

    Get PDF
    Oxygen is essential for animal life, and while geochemical proxies have been instrumental in determining the broad evolutionary history of oxygen on Earth, much of our insight into Phanerozoic oxygen comes from biogeochemical modelling. The GEOCARBSULF model utilizes carbon and sulphur isotope records to produce the most detailed history of Phanerozoic atmospheric O2 currently available. However, its predictions for the Paleozoic disagree with geochemical proxies, and with non-isotope modelling. Here we show that GEOCARBSULF oversimplifies the geochemistry of sulphur isotope fractionation, returning unrealistic values for the O2 sourced from pyrite burial when oxygen is low. We rebuild the model from first principles, utilizing an improved numerical scheme, the latest carbon isotope data, and we replace the sulphur cycle equations in line with forwards modelling approaches. Our new model, GEOCARBSULFOR, produces a revised, highly-detailed prediction for Phanerozoic O2 that is consistent with available proxy data, and independently supports a Paleozoic Oxygenation Event, which likely contributed to the observed radiation of complex, diverse fauna at this time

    On the potential for CO<sub>2</sub> mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    Get PDF
    <p>Abstract</p> <p>Continental flood basalts (CFB) are considered as potential CO<sub>2</sub> storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO<sub>2</sub> point emission sources.</p> <p>Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO<sub>2</sub> in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO<sub>2</sub> pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H<sub>2</sub>O in scCO<sub>2</sub>, and finally 1D reactive diffusion simulations giving reactivity at CO<sub>2</sub> pressures varying from 0 to 100 bar.</p> <p>Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO<sub>2</sub> mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO<sub>2</sub> stored as solid carbonates, if CO<sub>2</sub> is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO<sub>2</sub> phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt.</p

    High rates of denitrification and nitrate removal in cold seep sediments

    No full text
    We measured denitrification and nitrate removal rates in cold seep sediments from the Gulf of Mexico. Heterotrophic potential denitrification rates were assayed in time-series incubations. Surficial sediments inhabited by Beggiatoa exhibited higher heterotrophic potential denitrification rates (32 μ N reduced day−1) than did deeper sediments (11 μ N reduced day−1). Nitrate removal rates were high in both sediment horizons. These nitrate removal rates translate into rapid turnover times (<1 day) for the nitrate pool, resulting in a faster turnover for the nitrate pool than for the sulfate pool. Together, these data underscore the rigorous nature of internal nitrogen cycling at cold seeps and the requirement for novel mechanisms to provide nitrate to the sediment microbial community
    corecore