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Abstract Reservoirs in the Xing’anling Group in the

Suderte Oil Field, Hailar Basin exhibit ultra-low to low

permeability and high tuffaceous material content. This

study comprehensively analyzed diagenesis and quality

evolution of these low-permeability reservoirs using thin

sections, SEM samples, rock physical properties, pore

water data, as well as geochemical numerical simulations.

Calcite and analcite are the two main types of cements

precipitated in the eodiagenetic stage at shallow burial

depths in the reservoirs. These two cements occupied sig-

nificant primary intergranular pores and effectively retar-

ded deep burial compaction. Petrography textures suggest

selective dissolution of massive analcite and little disso-

lution of calcite in the mesodiagenetic stage. Chemical

calculations utilizing the Geochemist’s Workbench 9.0

indicated that the equilibrium constant of the calcite

leaching reaction is significantly smaller than that of the

analcite leaching reaction, resulting in extensive dissolu-

tion of analcite rather than calcite in the geochemical

system with both minerals present. Numerical simulations

with constraints of kinetics and pore water chemistry

demonstrated that the pore water in the Xing’anling group

is saturated with respect to calcite, but undersaturated with

analcite, leading to dissolution of large amounts of analcite

and no dissolution of calcite. Significant secondary inter-

granular pores have formed in analcite-cemented reservoirs

from selective dissolution of analcite in the mesodiagenetic

stage; the analcite dissolution formed preferential flow

paths in the reservoirs, which promoted feldspar dissolu-

tion; and dissolution of such minerals led to the present

reservoirs with medium porosity and low permeability.

Calcite-cemented tight reservoirs have not experienced

extensive dissolution of cements, so they exhibit ultra-low

porosity and permeability.

Keywords Eodiagenetic cements � Calcite � Analcite �
Selective dissolution � Secondary porosity � Hailar Basin

1 Introduction

Early cementation (e.g., carbonate cementation, zeolite

cementation) in clastic reservoirs has considerable impact

on reservoir quality evolution, as it may slow subsequent

burial compaction and provides significant potential min-

erals for burial dissolution (Yuan et al. 2015a; Dutton and

Loucks 2010; Fu et al. 2010; Yu and Lai 2006; Schmidt

and McDonald 1979; Zhu et al. 2012). Recent studies have

suggested that early zeolite cements (e.g., analcite, lau-

montite) can be dissolved extensively at the mesodiage-

netic stage to form secondary pores, enhancing reservoir

porosity and permeability (Tang et al. 1997; Zhu 1985;

Meng et al. 2013; Sun et al. 2014; Zhu et al. 2011).

However, there is significant disagreement among various

authors regarding burial dissolution of carbonate cements

in clastic reservoirs. In broad terms, there are two major

schools of thought (Bjørlykke and Jahren 2012; Giles 1987;

Giles and Marshall 1986; Yuan et al. 2015a, b). One group

of authors considers that carbonate cements can be leached

during burial to generate significant secondary porosity and

improve reservoir quality (Schmidt and McDonald 1979;
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Zhong et al. 2003; Yu and Lai 2006). The other group of

authors suggests that carbonate cement cannot be dissolved

extensively at the deep burial stage, but that carbonate

cementation degrades reservoir porosity and permeability

(Bjørlykke and Jahren 2012; Giles and Marshall 1986;

Taylor et al. 2010; Yuan et al. 2013, 2015a, b, c; Shou

2005). The reservoirs in the Xing’anling Group in the

Suderte Oilfield of the Hailar Basin, which are character-

ized by abundant volcanic materials, are mostly low to

ultra-low permeability reservoirs (Wang et al. 2012). Cal-

cite and analcite are two main types of early cements in

these reservoirs, and thin sections and SEM samples

demonstrate extensive selective dissolution of analcite

cement. However, there is not much evidence supporting

the dissolution of associated calcite cement in the

Xing’anling Group. Reservoirs with extensive dissolution

of analcite are characterized by significant secondary pores,

and the core porosity of such reservoirs can reach up to

20 %–25 %, while the core porosity of poor-quality

reservoirs with massive calcite cement is generally lower

than 10 %–15 % due to limited burial dissolution. To this

effect, understanding the origin and processes at work in

the selective dissolution of these two cements benefits

reservoir quality prediction (Yuan et al. 2015a).

The selective dissolution phenomena of different miner-

als in sediments have garnered quite a bit of attention from

geologists in recent years (Cao et al. 2014; Macquaker et al.

2014; Turchyn and Depaolo 2011; Yuan et al. 2015a).

Macquaker et al. (2014) and Turchyn and Depaolo (2011),

for example, reported similar phenomena in fine-grained

sediments (Macquaker et al. 2014; Turchyn and Depaolo

2011) and Yuan et al. (2015a) investigated the selective

dissolution between feldspars and calcite in buried sand-

stones. Other geologists have studied genetic mechanisms of

the selective dissolution phenomena between zeolites and

calcite via static plots, including Gibbs free energy versus

temperature (burial depth) profiles (Meng et al. 2013, 2014;

Qi 2013; Xiu 2008; Zhao 2005) and equilibrium constant

versus temperature profiles (Qi 2013; Zhao 2005) of leaching

reactions of different minerals. Studies of water–rock inter-

actions in geochemical systems considering both minerals

over extended periods of time and kinetics-related con-

straints, however, are relatively few. In effort to remedy this,

the present study was conducted with the following main

objectives: (1) to investigate sandstone diagenesis using

cores, thin sections, and SEM sample analysis, (2) to analyze

various impacts of selective dissolution of analcite and cal-

cite on reservoir quality evolution by testing physical prop-

erties, and (3) to decipher the genetic mechanism of selective

dissolution between analcite and calcite using the Geo-

chemist’s Workbench (GWB) 9.0 with constraints of pore

water chemistry and kinetic data.

2 Geological settings

Suderte Oilfield, with an exploration area of about

200 km2, is located near the middle of the Suderte tectonic

zone in the Beier Sag of the Hailar Basin. The tectonic

zone is cut by NE-trend and WE-trend faults, splitting the

oilfield into several NEE-trend fault blocks. The sediments

in the oilfield contain the Triassic Budate Formation,

Cretaceous Tongbomiao, Nantun, Damoguaihe, Yimin, and

Qingyuangang Groups, and Cenozoic Formation, from

base to top. The Tongbomiao Group and the first member

of the Nantun Group have been further divided into six oil

group members marked X0–XV (Fig. 1), which constitute

the Xing’anling Oil Group, the major oil-bearing sequence

in the area. The sedimentary strata in the study area feature

large structural altitude differences and significant thick-

ness variations caused by fault impacts. Reservoirs in oil

group members XI and XII, which show stable spatial

distribution, are the main focus of this study.

During the depositional period of the first member of

the Nantun Group, the Suderte tectonic zone was a small

rift basin controlled by multiple fault terraces. The steep

slope zone of the rift basin was characterized by large

altitude differences and, of course, steep slopes. The

alluvial fan depositional systems, with mainly southwest

and southeast source supplies, entered the lakes quickly to

form fan deltas; multisource fan deltas were intercon-

nected to form fan delta aprons distributed along the fault

margins (Wang et al. 2012). Studies on zircon U–Pb

chronology have demonstrated that volcanic activity in

the Hailar Basin continued during the late Jurassic to the

early Cretaceous period, with stronger activity in 128–117

and 116–113 Ma (Chen et al. 2015; Zhao et al. 2013).

Impacted by simultaneous volcanic eruptions during the

depositional period, rocks in the XI–XIV oil group

members generally contain volcanic debris (Xiao et al.

2011), consisting mainly of tuff conglomerate, tuff sand-

stones, and some sedimentary tuff.

Burial and thermal histories of the Suderte tectonic zone

show that the Nantun Formation experienced four stages:

rapid subsidence, uplift, slow subsidence, and stability

(Fig. 2) (Song 2013; Shen et al. 2013). The paleo Forma-

tion temperature gradient in the Cretaceous was about

4.2–5.6 �C/100 m, higher than the present temperature

gradient (3.30 �C/100 m) (Cui et al. 2011). Burial and

thermal histories of well Bei-30 show that the Nantun

Formation experienced its deepest burial depth and highest

formation temperature by the end of the early Cretaceous,

after which formation temperature decreased continually

with uplift and decreasing temperature gradient. The pre-

sent burial depth and temperature are below maximum

burial depth and temperature.
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3 Petrography

Members XI–XII in the Xing’anling Group in the Suderte

Oilfield are mainly composed of fine sandstones, medium-

to coarse-grained sandstones, fine-grained conglomerates,

and siltstones, as evidenced by core observation and thin

section identification. The siltstone and conglomerates are

rich in tuffaceous matrix, and the sandstones are composed

of feldspathic litharenite and litharenite (Fig. 3) that are

texturally and compositionally immature. The sandstones

contain an average of 10 % detrital quartz grains, 20 %

feldspar, and 70 % rock fragments which consist mainly of

andesitic and rhyolitic tuff (up to 80 %), followed by

sedimentary rock fragments. The amount of intergranular

fillings ranges from 10 % to 25 %, including 8 %–20 %

authigenic cements and less than 5 % matrix (detrital clays

and volcanic ash). Authigenic minerals consist mainly of

calcite, analcite, and kaolinite. On the whole, detrital grains
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are moderately to poorly sorted, detrital rock fragments are

present in subangular shapes and detrital quartz grains in

subangular or subrounded shapes. Grain contacts are

mainly line–line and concavo–convex.

4 Diagenesis

4.1 Types and characteristics of diagenesis

4.1.1 Compaction

Compaction is a major factor affecting porosity and per-

meability reduction during reservoir burial (Lu et al. 2015;

Zhang et al. 2014; Zhu et al. 2010; Xu et al. 2008; Cao

et al. 2012, 2014; Pittman and Larese 1991; Xi et al. 2015).

Due to their high content of ductile tuff debris, Xing’anling

Group rocks have low compaction resistance and are

generally strongly compacted (Mousavi and Bryant 2013;

Pittman and Larese 1991) (Fig. 4a). The development of

early cementation can effectively retard compaction. In

sandstones with little cement, detrital grain contacts are

mainly line–line and concavo–convex as opposed to point–

line. In sandstones with abundant cements, conversely,

grain contacts are mainly line–point and point–line.

Quantitative statistics show that in reservoirs with high

cement (calcite) content, reservoirs exhibit porosity loss

from compaction of about 10 %–20 %. In reservoirs with

relatively low cement content but well-developed inter-

granular secondary pores formed during analcite dissolu-

tion (analcite cementation occurred in the eodiagenetic

stage), porosity loss due to compaction is nearly 20 %–
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25 %. While in reservoirs with relatively low-cement

content and poorly developed secondary pores (weak

cementation occurred in the eodiagenetic stage), porosity

loss due to compaction is approximately 30 %–35 %.

4.1.2 Cementation

Cementation also has significant impact on reservoir

quality evolution during burial. Various cements in the

Xing’anling Group reservoirs include calcite, analcite,

kaolinite, and a small amount of quartz.

1. Carbonate cementation.

Carbonate is the most important cement component in

the Xing’anling sandstones. The mineral texture of

carbonate cement and the relationship between car-

bonate cement and secondary pores indicate the

existence of abundant stage-I calcite cement (early

calcite) and a small amount of stage-II calcite cement

(late calcite). In early calcite-cemented tight sand-

stones, cements occupy almost all primary pores and

can account for 25 %–30 % of the total sandstone

volume. Generally, early calcite-cemented sandstones

are supported by detrital grains with point–point

contacts or with floating texture (Fig. 4i), implying

there was little compaction when cementation occurred

(Gluyas and Coleman 1992; Yuan et al. 2015b, c). The

content of late calcite cement is generally less than

1 % and this has only slight impact on reservoir

quality. Late calcite cement occurred mainly in

secondary pores in the study reservoirs, forming after

the dissolution of feldspars and analcite.

2. Analcite cementation.

The abundance of volcanic materials in the reservoirs

of the Xing’anling Group and the early alkaline

environment following deposition facilitated cemen-

tation of zeolite (Tang et al. 1997; Xiao et al. 2011;

Zhu et al. 2011). Textures in thin sections indicate a

competitive relationship between analcite and calcite

cements (Fig. 4d–g), which plays a key role in

controlling reservoir quality evolution. In the reser-

voirs, this competitive relationship is indicated by

the negative relationship between the amount of

carbonate cement and the amount of analcite and

analcite secondary pores (Fig. 5). The analcite

cement was precipitated in the form of pyritohedron

single crystals and blocky aggregates in intergranular

pores (Fig. 6b), and currently occurs primarily as

dissolution remnants (Fig. 4e–h). Petrography texture

of the replacement of analcite by calcite (Fig. 4d)

indicates that the formation of analcite cement was

just prior to or synchronous with that of calcite

cement.

3. Authigenic clays.

Volcanic rock fragments in reservoirs of the Xing’an-

ling Formation consist mainly of acidic andesite and

rhyolitic tuff, exhibiting weak dissolution. Some

secondary micropores occurred in fragments through

partial hydrolysis of these grains. Tuffaceous matrix

was abundant in the reservoirs and this has experienced

complex diagenesis. In the eodiagenetic stage, the

tuffaceous matrix was transformed to chlorite and

illite/smectite (I/S) in the presence of alkaline water.

Chlorite was precipitated mainly as grain rims

(Fig. 4e), which may have retarded quartz cementation

in the mesodiagenetic stage. Kaolinite is the most

important authigenic clay mineral in the reservoirs, at

relative content up to 70 %–80 % of the total clay

minerals in the sandstones (Fig. 7). Kaolinite occurs

mainly in the sandstones with abundant secondary

pores, and is scarce in calcite-cemented, tight rocks.

This textural relationship indicates that the precipita-

tion of kaolinite occurred after early carbonate cemen-

tation, probably in the mesodiagenetic stage, and as a

byproduct of dissolution of feldspars and analcite.

Single kaolinite crystals generally show hypidiomor-

phic pseudohexagonal structure, and the size of

kaolinite platelets is usually less than 5–8 lm in width

with thickness less than 0.5 lm. Kaolinite aggregates,

mainly in short vermiform shape and booklet-like

shape, are generally less than 20 lm in length.

Kaolinite is distributed in a relatively dispersed pattern

in the study area, and contains abundant intercrystal

micropores (Figs. 4c, 6c).

4. Quartz cementation.

Petrography reveals that quartz cementation is rela-

tively weak in the sandstones. Quartz cement occur

mainly as small quartz crystals (\5–10 lm) (Fig. 6d),

and quartz overgrowth cannot be identified in thin

section or SEM samples. The impact of quartz

cementation on physical properties of reservoirs is
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insignificant. Authigenic quartz occurs mainly in the

reservoirs with abundant secondary pores, and is scarce

in calcite-cemented tight rocks, indicating that quartz

cementation occurred after early carbonate cementa-

tion, probably in the mesodiagenetic stage, and also as

a byproduct of dissolution of analcite and feldspars.

4.1.3 Selective dissolution of minerals

Mineral dissolution generally improves reservoir quality

(Schmidt and McDonald 1979; Surdam et al. 1984; Yuan

et al. 2015c; Cao et al. 2012; Zhu et al. 2007; Han et al.

2007). Vitrinite reflectance (R0 %) of organic matter in

B14-X55-50,1608.83m B14-X55-50,1653.23m

K

K

K

K

Qa
Qa

Qa

(d)(c)

B16,1335.33m

F

F

FD

Ac

B16,1697.63m

Ac

Ac

Ac

10 m20 m

20 m 10 m

40 m

Ca

FD

10 m

I/S

I/S

De110-217, 1435.44m

5 m

B16,1698.54m

(b)(a)

(f)(e)

Fig. 6 SEM micrographs of sandstones in the Xing’anling Group,

Suderte Oilfield. a Mixed layer illite/smectite (I/S) in sandstones;

b analcite (Ac) in intergranular pores; c kaolinite (K) in pores;

d quartz crystals (Qa) in intergranular pores; e extensively dissolved

feldspar (F); f analcite (Ac) and corroded notches

Pet. Sci. (2016) 13:402–417 407

123



interbedded mudstones in the Xing’anling Group is up to

0.8 %–1.0 %, and thermal evolution of such organic matter

has produced large amounts of CO2 and organic acids,

which have probably leached unstable minerals (Schmidt

and McDonald 1979; Surdam et al. 1984; Yuan et al.

2015a). Petrography textures show that in sandstones with

extensive cementation of early calcite, the calcite cement

was apparently not leached. As the calcite cement clogged

fluid flow paths, feldspar in the sandstones were also not

dissolved extensively. In sandstones with weak calcite

cementation but extensive analcite cementation, extensive

dissolution of analcite and feldspars occurred and formed a

large amount of secondary porosity (Figs. 4b, c, 4e–h, 6e,

8). There is no petrographic evidence, however, supporting

dissolution of the associated calcite cements in such porous

sandstones (Fig. 4d–g). Differing from past studies which
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suggested that carbonate minerals could be easily dissolved

by acidic fluids, this selective dissolution of analcite in the

presence of calcite in the studied reservoirs is quite inter-

esting (Macquaker et al. 2014; Yuan et al. 2015a).

4.2 Diagenetic sequences

The relative timing of the major diagenetic sequence of the

sandstones in the Xing’anling Group, which has been

determined from thin sections and SEM examination, is

based on texture relationship of cementation, dissolution,

and replacement of various minerals (Figs. 4, 6). In sum-

mary, the integrated diagenetic sequences consist of com-

paction/chlorite cementation/early analcite cementation/early

calcite cementation–analcite dissolution/feldspar dissolu-

tion/authigenic kaolinite precipitation/quartz cementation–

late carbonate cementation (Fig. 9).

5 Early cements and reservoir properties

The selective dissolution of early analcite cement and

calcite cement at the mesodiagenetic stage led to signifi-

cant differences in properties among various reservoirs.

5.1 Reservoirs with eodiagenetic cementation

and mesodiagenetic nondissolution of calcite

Thin sections and SEM samples demonstrate that in

reservoirs with extensive calcite cementation, primary

intergranular pores are occupied almost entirely by calcite

cement. Reservoir spaces consist of a few residual micro-

pores and secondary pores formed by dissolution of feld-

spars and analcite, and the content of pores in thin sections

is commonly lower than 0.1 %. Physical properties of such

sandstones show that the calcite-cemented tight sandstones

are typically found in low-porosity and ultra-low perme-

ability reservoirs (Fig. 10a1, b1, c), with porosity lower

than 15 % and permeability lower than 0.1 mD. These

sandstones are characterized by poor pore structures, gen-

erally with micropores and microthroats. High-pressure

mercury injection tests matched with thin section exami-

nation demonstrate that mercury injection curves are

characterized by high initial replacement pressure and low

injection saturation. Initial replacement pressure is gener-

ally higher than 5 MPa, maximum pore-throat radius is

lower than 0.2 lm, average pore-throat radius is lower than

0.05 lm, mercury injection saturation is below 50 %, and

mercury withdrawal efficiency is below 30 %.
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5.2 Reservoirs with eodiagenetic cementation,

mesodiagenetic dissolution of analcite

Thin sections and SEM samples indicate that in reservoirs

with strong early cementation and extensive late dissolu-

tion of analcite, spaces are mainly secondary pores formed

by dissolution of analcite and feldspars while micropores in

kaolinite aggregates, and primary pores are undeveloped.

Quantitative analysis of different pores in thin sections

shows that secondary pores formed by analcite dissolution

range from 2 % to 6 % with an average of 4 %, and sec-

ondary pores formed by feldspar dissolution range from

2 % to 7 % with an average of 5 %. Physical properties of

these sandstones are much more favorable than those of

calcite-cemented tight sandstones, with porosity higher

than 15 % and permeability higher than 1 mD; these

reservoirs typically show medium porosity and low per-

meability (Fig. 10a2, b2, c), and sandstones are charac-

terized by moderate pore structures with generally

moderate pores and fine- to micro-throats. High-pressure

mercury injection tests matched with the thin sections

demonstrate that mercury injection curves are character-

ized by low initial replacement pressure and high injection

saturation. The initial replacement pressure is generally

lower than 0.1–1 MPa, maximum pore-throat radius is

lower than 1 lm, and average pore-throat radius is lower

than 0.2 lm.

5.3 Evolution models of reservoir physical

properties

For reservoirs with extensive carbonate cementation, burial

dissolution is especially weak in reservoirs with abundant

calcite, and chemical reactions nearly cease after extensive

calcite cementation. The porosity of such sandstones

decreased significantly due to strong compaction and exten-

sive calcite cementation, and without significant burial dis-

solution, the reservoirs still show low porosity now (Fig. 9).

For reservoirs with strong analcite cementation, analcite

and feldspars were dissolved extensively, and such reser-

voir experienced a relatively complete diagenetic

sequence. The porosity of these sandstones also decreased

significantly with intensive compaction and cementation at

the eodiagenetic stage. Extensive dissolution of analcite

and feldspars at the mesodiagenetic stage, however, formed

large-volume secondary pores, and the current porosity

recovered to a relatively high level (Fig. 9).

6 Genetic mechanism of selective dissolution
reaction

Laboratory experiments indicated that carbonate minerals

can be dissolved much faster than aluminosilicate minerals

(Arvidson et al. 2003; Yuan et al. 2015a). However, recent
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studies suggested that feldspars can be selectively dis-

solved in the presence of carbonate minerals in buried

sandstones (Yuan et al. 2015a). The selective dissolution of

analcite in the presence of calcite is also interesting as a

departure from the results of traditional laboratory experi-

ments (Savage et al. 1999). This section reports the

numerical calculations and simulations we conducted using

Geochemist’s Workbench 9.0 to investigate the chemical

reactions in the analcite–calcite–acid (CO2 acid or other

acids) H2O system, and proposes a genetic mechanism of

the selective dissolution reaction.

6.1 Chemical reactions

The leaching reactions of analcite and calcite by CO2 can

be expressed by the following equations (Giles and Mar-

shall 1986; Yuan et al. 2015a; Zhang et al. 2011):

NaAlSi2O6 � H2O
Analcite

þ CO2ðg) þ 0:5H2O

¼ Naþ þ HCO�
3 þ 0:5Al2Si2O5ðOHÞ4

Kaolinite

þ SiO2
Quartz

; ð1Þ

KAlSi3O8
K�feldspar

þCO2ðg) þ 1:5H2O

¼ 0:5Al2Si2O5ðOHÞ4
Kaolinite

þ 2SiO2
Quartz

þKþ þ HCO�
3 ; ð2Þ

CaCO3
Calcite

þCO2ðg) þ H2O ¼ Ca2þ þ 2HCO�
3 : ð3Þ

The log equilibrium constant of the above three reac-

tions can be expressed as

logK1 ¼ �logf ½CO2ðg)� �loga½H2O� þ loga½Nþ�
þ loga½HCO�

3 �;

logK2 ¼ loga½Kþ�
þ loga½HCO�

3 � �logf ½CO2ðg)� �1:5loga½H2O�;

logK3 ¼ loga½Ca2þ�
þ 2loga½HCO�

3 ��logf ½CO2ðg)]�loga½H2O�:

Instead of CO2, when other acids are used to leach analcite

and calcite, the chemical reactions can be expressed by as

follows:

NaAlSi2O6 � H2O þ Hþ ¼ 0:5H2O þ Naþ

þ 0:5Al2Si2O5ðOHÞ4

þ SiO2; ð4Þ

KAlSi3O8 þ Hþ þ 0:5H2O ¼ 0:5Al2Si2O5ðOHÞ4

þ 2SiO2 þ Kþ; ð5Þ

CaCO3 þ Hþ ¼ Ca2þ þ HCO�
3 : ð6Þ

The log equilibrium constant of the above reactions can be

expressed as

logK4 ¼ �logf ½CO2ðg)� �loga½H2O] þ loga½Nþ�
þ loga½HCO�

3 �;

logK5 ¼ loga½Kþ��loga½Hþ��0:5loga½H2O�;

logK6 ¼ loga½Ca2þ�
þ 2loga½HCO�

3 � �logf ½CO2ðg)� �loga½H2O�:

The values of log equilibrium constant of the four reac-

tions are shown in Fig. 11, where logK1 is higher than

logK2 and logK3 is higher than logK4, indicating that the

equilibrium constant of analcite leaching reactions are

much higher than that of calcite leaching reactions.

6.2 Kinetic data

For kinetically controlled mineral dissolution and precipi-

tation, the following simple rate law was applied (Yuan

et al. 2015a):

rm ¼ kmAmð1�Q=KÞ; ð7Þ

where m is the mineral index, rm is the reaction rate (mol/s,

positive for dissolution and negative for precipitation), km

is the rate constant (in mol/cm2/s), Am is the mineral’s

surface area (in cm2), and Q and K are the activity product

and equilibrium constants for the dissolution reaction,

respectively. The temperature dependence of the reaction

rate constant can be expressed reasonably well via the

Arrhenius equation (Lasaga 1984; Steefel and Lasaga

1994). Because the rate constants for K-feldspar, calcite,

and secondary minerals are generally reported at around

25 �C, it is reasonable to approximate the rate constant

dependency as a function of temperature (Xu et al. 2005):

k ¼ k25 exp
�Ea

R

1

T
� 1

298:15

� �� �
; ð8Þ

where Ea is the activation energy, k25 is the rate constant at

25 �C, R is the gas constant, and T is the absolute

temperature.

Mineral dissolution and precipitation rates are a product

of the kinetic rate constant and the reactive surface area

described in Eq. (7). Parameters used for the kinetic rate

expression of calcite and K-feldspar are provided in

Table 1. Temperature-dependent kinetic rate constants

were calculated using Eq. (8) and the precipitation of

possible secondary minerals is represented utilizing the

same kinetic expression as that used for dissolution.

Nucleation was also considered in the current simulations

for mineral precipitation. Scientific publications were ref-

erenced for kinetic parameters and the specific surface

areas of calcite, analcite, quartz, and kaolinite with specific

grain sizes.
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The evolution of surface area in natural geologic media

is very complex and reported that specific surface areas

vary based on mineral size and even literature reference.

Specific surface areas of clean calcite grains measuring

125–250 and 25–53 lm by BET method were reported as

1700 and 2100 cm2/g (Sanz et al. 2011), respectively. Also,

the surface areas of calcite grains measuring 100–200 lm

by BET method were reported as 662 cm2/g according to

Pokrovsky et al. (2005). The specific surface areas of clean

K-feldspar and quartz grains measuring 50–100 lm by

BET method were reported as 955 and 945 cm2/g,

respectively (Harouiya and Oelkers 2004), that for

K-feldspar grains measuring 50–100 lm was 1400 cm2/g

(Alekseyev et al. 1997). Specific surface areas of clean

analcite grains measuring 63–75, 45–63, and 32–45 lm by

BET method were reported as 1700 and 2100 cm2/g,

respectively (Savage et al. 1999). The specific surface areas

of clean K-feldspar and quartz grains measuring

50–100 lm were reported as 1030, 1450, and 830 cm2/g,

respectively, and the specific surface area of clean quartz

grains measuring 50–100 lm was reported as 1000 cm2/g

(Harouiya and Oelkers 2004). For this study, the specific

surface areas of 2000 cm2/g for calcite and 1800 cm2/g for

analcite are used. Kaolinite has a much larger specific

surface area, up to approximately 10 9 104 cm2/g (Yang

and Steefel 2008) (Table 1).

6.3 Pore water

Data of 40 pore water samples from sandstone reservoirs in

the Xing’anling Group in the Suderte Oilfield show that the

pore water is characterized by NaHCO3-water. The salinity

of pore water is very low, ranging from 1737 to 10,813 mg/

L, with an average of 5689 mg/L. Primary ions consist

mainly of Na?, Cl-, and HCO3
- (Table 2). We employed

one water sample with fairly average composition for

numerical simulations.

6.4 Simulation results

6.4.1 Analcite–calcite–CO2–H2O system

Based on the diagenetic environment of the studied sand-

stones, 80 �C was employed in short-term (100 s) (Fig. 12)

and long-term (1000 years) (Fig. 13) simulations, and

1.176 bar was set for partial pressure of CO2 according to

the equation logpCO2
= –1.45 ? 0.019T (Smith and

Ehrenberg 1989). Our simulation results showed that the

Lo
gK

-14

-12

-10

-8

-6

-4

-2

0

2

LogK3 (Calcite)

LogK1 (Analcite)

0 50 100 150 200 250 300 0 50 100 150 200 250 300
-4

-2

0

2

4

6

8

10

Lo
g
K

Temperature, °C

LogK2 (K-feldspar)

Temperature, °C

LogK6 (Calcite)

LogK4 (Analcite)

LogK5 (K-feldspar)

(b)(a)

Fig. 11 Relations of temperature versus equilibrium constant in acid solution with analcite and calcite

Table 1 Kinetic data for different minerals used in numerical simulations

Minerals Km (25 �C),

mol/cm2/s

Ea, kJ/mol Km (80 �C),

mol/cm2/s

Specific surface

area, cm2/g

Nucleus,

cm2/cm3
References

Calcite 1 9 10-9 48.2 2.06 9 10-8 2000 – Pokrovsky et al. (2009); Sanz et al. (2011)

K-feldspar 1 9 10-17 57.78 1.08 9 10-15 1000 – Kampman et al. (2009); Xu et al. (2005)

Analcite – – 3.16 9 10-14 1800 – Savage et al. (1999)

Quartz 1.26 9 10-18 87.5 3.07 9 10-16 1000 500 Harouiya and Oelkers (2004); Xu et al. (2005)

Kaolinite 1.26 9 10-17 62.76 6.50 9 10-16 10 9 104 500 Xu et al. (2005); Yang and Steefel (2008)
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chemical reaction processes at work in the reservoirs can

be roughly divided into two stages.

Stage 1: Fast calcite precipitation—slow analcite dis-

solution (Fig. 12). At the beginning of the simulation, the

mineral saturation index showed that pore water in the

Xing’anling Formation was oversaturated with respect to

calcite and undersaturated with respect to analcite, caus-

ing rapid calcite precipitation. Because the calcite reac-

tion rate is high, this stage lasts a very short time (10 s).

Only a little analcite can be dissolved in such a brief

time, and the concentrations of Al3? and SiO2 (aq) in the

fluids are low, so no precipitation of kaolinite or quartz

occurs.

Stage 2: Slow calcite precipitation—slow analcite dis-

solution (Fig. 13). After stage 1, the mineral saturation

index showed that pore water reached equilibrium with

calcite while pore water was still undersaturated with

analcite, leading to slow dissolution of analcite. As the

concentrations of Al3? and SiO2 (aq) increased, the pore

water became saturated with respect to kaolinite and

quartz, leading to precipitation of secondary minerals. As

the dissolution rate of analcite is very low, this stage could

last a long time.

6.4.2 Analcite–K-feldspar–CO2–H2O system

Based on the diagenetic environment of the studied sand-

stones, 80 �C was used in the short-term (100 s) (Fig. 9)

and long-term (1000 years) (Fig. 10) simulations, and

1.176 bar was set for partial pressure of CO2 according to

the equation logpCO2
= –1.45 ? 0.019T (Smith and

Ehrenberg 1989). Simulation results showed that in the

analcite–K-feldspar–CO2–H2O system, dissolution of large

volumes of analcite occurred more easily than that of

K-feldspar and at a much faster rate (Fig. 14). In effect, in

the geochemical system consisting both of analcite and

K-feldspar, extensive feldspar dissolution probably occur-

red later than analcite dissolution, which is consistent with

the petrography texture of the few analcite remnants in the

reservoirs in the Xing’anling Formation. As the concen-

trations of Al3? and SiO2 (aq) increased, the pore water

became saturated with respect to kaolinite and quartz,

Table 2 Composition of current pore water in the Xing’anling Group, Suderte Oilfield

Salinity, mg/L Na??K?, mg/L Cl-, mg/L Ca2?, mg/L Mg2?, mg/L HCO3
-, mg/L SO4

2-, mg/L

Maximum 10,813 6279 5021 114 50 3031 1575

Minimum 1737 436 272 1 1 0 66

Average 5689 1855 1356 29 17 1728 567

Sample no. 6548 4990 2184 24 10 1308 784
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leading to precipitation of secondary minerals. Because the

rate of analcite dissolution is very low, this stage lasts a

long time.

A study by Yuan et al. (2015a) showed that feldspar

dissolution occurs more easily than calcite dissolution in a

geochemical system with both minerals. Constrained by

pore water, equilibrium constants of different reactions,

dissolution/precipitation rate, and saturation state of the

pore water to minerals, analcite dissolution occurred more

easily than calcite dissolution in the geochemical system

with these two minerals, and analcite dissolution occurred

more easily than feldspar dissolution in the geochemical

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0

5

10

15

20

25

30

35

40

M
in

er
al

s,
 g

Calcite

Quartz

Kaolinite

Analcite

1

S
om

e 
sp

ec
ie

s 
ac

tiv
ity

Analcite

Calcite

0

1

2

3
2.5

1.5

0.5

0
-2×105

-4×105

-6×105

-8×105

-10×105

-1.2×106

-1.4×106
-1.6×106

-1.8×106

1×10-20

1×10-15

1×10-10

1×10-5

1e-6
1e-5
1e-4

0.001
0.01

0.1
1

10
100

1000
1e4
1e5

S
om

e 
flu

id
 c

om
po

ne
nt

s,
 m

g/
L

6.5
6.6
6.7
6.8
6.9

7
7.1
7.2
7.3
7.4
7.5

pH

0

0.5

1

1.5

2

2.5

3

3.5

4
M

in
er

al
s 

sa
tu

ra
tio

n,
 Q

/K

Analcite

Calcite

Kaolinite

Quartz

M
in

er
al

 d
is

so
lu

tio
n 

ra
te

, g
/y

r

HCO3
-

Ca++

Al+++

SiO2(aq)

HCO3
-

Na+

SiO2(aq)

Ca++

Al+++

Fig. 13 Numerical simulation results of fluid-rock reactions in the calcite–analcite–CO2–H2O system for extended periods of time (500 years)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

Time, yr

M
in

er
al

s 
sa

tu
ra

tio
n,

 Q
/K

Analcite

K-feldsparKaolinite

Quartz

0

5

10

15

20

25

30

35

40

M
in

er
al

s,
 g

Quartz

Kaolinite

Analcite

K-feldspar

10-5

1

S
pe

ci
es

 a
ct

iv
ity

1
10

106

F
lu

id
 c

om
po

ne
nt

s,
 m

g/
L

6.5
6.6
6.7
6.8
6.9

7
7.1
7.2
7.3
7.4
7.5

pH

10-8

0.001
0.01

0.1
1

10
100

M
in

er
al

 d
is

so
lu

tio
n 

ra
te

, g
/y

r

Analcite 

K-feldspar 

pH

10-10

10-15

10-20

10-7

10-6

10-5

10-4

105

104

103

102

10-6
10-5

10-4

10-3
10-2

10-1

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

0 50 100 150 200 250 300 350 400 450 500
Time, yr

HCO3
-Na+

SiO2(aq)

Al+++

K+

K+

Na+

HCO3
-

Al+++

SiO2(aq)

Fig. 14 Numerical simulation results of fluid-rock reactions in analcite–K-feldspar–CO2–H2O system for extended periods of time (500 years)

414 Pet. Sci. (2016) 13:402–417

123



system with these two minerals. Thus, we concluded that in

geochemical systems with analcite, K-feldspar, and calcite,

the dissolution trend is analcite[K-feldspar[ calcite.

The selective dissolution of analcite and K-feldspar in the

presence of calcite is an inevitable natural result, indicating

that different early cements can develop different dissolu-

tion features during the mesodiagenetic period in the

presence of acidic fluids. Understanding these processes

substantially assists high-quality reservoir prediction.

7 Conclusions

The most notable conclusions and implications of this

study can be summarized as follows.

1. The Xing’anling Group reservoirs with abundant

volcanic materials in the Suderte Oilfield are low-

permeability and ultra-low permeability reservoirs,

texturally and compositionally immature. The reser-

voirs consist mainly of litharenite and feldspathic

litharenite and have generally experienced com-

paction/early analcite cementation/early calcite cemen-

tation–feldspar dissolution/analcite dissolution/

authigenic kaolinite precipitation/quartz cementation–

late carbonate cementation.

2. The main early cements in the study area are calcite

and analcite. In the mesodiagenetic stage, abundant

analcite was selectively dissolved and calcite was left

intact. The equilibrium constant of the calcite leaching

reaction by acidic fluids is significantly lower than that

of the analcite leaching reaction, indicating that in the

analcite–calcite–CO2–H2O system, calcite is prone to

reach the precipitation–dissolution equilibrium stage.

Simulations with constraints of pore water and kinetics

demonstrated that the pore water is supersaturated with

respect to calcite, thus calcite cannot be dissolved, and

that the water is undersaturated with respect to

analcite, leading to extensive dissolution of analcite.

3. Selective dissolution of different early cements

resulted in differing impacts on reservoir quality

evolution. Reservoirs with abundant analcite exhibit

favorable physical properties through burial dissolu-

tion of analcite cement at the mesodiagenetic stage,

while reservoirs with abundant early calcite exhibit

poor physical properties with no dissolution of calcite

cement.
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