272 research outputs found

    Shell occupancy of the intertidal hermit crab Clibanarius erythropus (Decapoda, Diogenidae) on São Miguel (Azores).

    Get PDF
    Copyright © 2000 Kluwer Academic Publishers. Printed in the Netherlands.The intertidal hermit crab Clibanarius erythropus was collected at three sites on São Miguel (Azores) during low spring tides. Shells occupied were identified and measured. Crab sizes ranged from 1.78 to 13.67 mm (cephalothoracic shield length), with an average size of 4.40 +- 1.44 mm. Of the 19 different shells utilised, the most frequent were Littorina striata (23.8%), Nassarius incrassatus (22.5%) and Mitra sp. (22.0%). At Fenais da Luz. L. strita was most frequently occupied, while at Água de Alto it was N. incrassatus and, at Caloura, Mitra sp. shells were most frequently used. Shell selection appears to be determined by respective sizes of hermit crab and shell species. Small size-class crabs occupy more shell species than larger crabs. The smallest crab was found at Fenais da Luz occupying a small Bittium sp., whereas the largest crab was found at Caloura inhabiting Stramonita haemastoma

    Incorporating prior knowledge improves detection of differences in bacterial growth rate

    Get PDF
    BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate

    Immunology Taught by Bacteria

    Get PDF
    It has been proposed that the innate immune system might discriminate living and virulent pathogens from dead or harmless microbes, but the molecular mechanisms by which this discrimination could occur remain unclear. Although studies of model antigens and adjuvants have illuminated important principles underlying immune responses, the specific immune responses made to living, virulent pathogens can only be discovered by studies of the living, virulent pathogens themselves. Here, I review what one particular bacterium, Legionella pneumophila, has taught us about the innate immune response. Pathogens differ greatly in the mechanisms they use to invade, replicate within, and transmit among their hosts. However, a theme that emerges is that the pathogenic activities sensed by host cells are conserved among multiple pathogenic bacteria. Thus, immunology taught by L. pneumophila may lead to a more general understanding of the host response to infection

    Unmasking Chaotic Attributes in Time Series of Living Cell Populations

    Get PDF
    . Such complicated dynamics are generally the result of a combination of stochastic events and deterministic regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene expression, and tumor growth.Using a simple, original, nonlinear method based on return maps, we previously found a geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However, nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be observed in periodic or stochastic fluctuations.Theoretical models predict various cell population dynamics, from stable through periodically oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells, but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled

    Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function

    Get PDF
    Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states

    Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    Get PDF
    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range

    Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (∼50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD

    Modified Habitats Influence Kelp Epibiota via Direct and Indirect Effects

    Get PDF
    Addition of man-made structures alters abiotic and biotic characteristics of natural habitats, which can influence abundances of biota directly and/or indirectly, by altering the ecology of competitors or predators. Marine epibiota in modified habitats were used to test hypotheses to distinguish between direct and indirect processes. In Sydney Harbour, kelps on pier-pilings supported greater covers of bryozoans, particularly of the non-indigenous species Membranipora membranacea, than found on natural reefs. Pilings influenced these patterns and processes directly due to the provision of shade and indirectly by altering abundances of sea-urchins which, in turn, affected covers of bryozoans. Indirect effects were more important than direct effects. This indicates that artificial structures affect organisms living on secondary substrata in complex ways, altering the biodiversity and indirectly affecting abundances of epibiota. Understanding how these components of habitats affect ecological processes is necessary to allow sensible prediction of the effects of modifying habitats on the ecology of organisms

    Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors

    Get PDF
    Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules
    corecore