3,594 research outputs found

    Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields

    Full text link
    Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge condition are introduced. Using the de Donder-Stueckelberg gauge frame, equivalence of the ordinary-derivative and higher-derivative approaches is demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal fields is also presented. Interrelations between the ordinary-derivative gauge invariant formulation of conformal fields and the gauge invariant formulation of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3, brief review of higher-derivative approaches added. In Sec.4, new representations for Lagrangian, modified de Donder gauge, and de Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations between the ordinary-derivative and higher-derivative approaches added. Appendices A,B,C,D and references adde

    Femoral neck fracture after electrical shock injury

    Get PDF
    A case of femoral neck fracture is reported after electrical shock injury with 300 V direct current in a 41-year old male. He had two small full thickness burns on his left heel, probably the exit wounds. A fracture after electrical shock due to musculoskeletal contractions is a very rare condition. Surgeons caring for patients with electrical injury should be aware of the possibility of skeletal injuries. Without vigilance for these injuries, delay in diagnosis may occur

    Geometry dominated fluid adsorption on sculptured substrates

    Full text link
    Experimental methods allow the shape and chemical composition of solid surfaces to be controlled at a mesoscopic level. Exposing such structured substrates to a gas close to coexistence with its liquid can produce quite distinct adsorption characteristics compared to that occuring for planar systems, which may well play an important role in developing technologies such as super-repellent surfaces or micro-fluidics. Recent studies have concentrated on adsorption of liquids at rough and heterogeneous substrates and the characterisation of nanoscopic liquid films. However, the fundamental effect of geometry has hardly been addressed. Here we show that varying the shape of the substrate can exert a profound influence on the adsorption isotherms allowing us to smoothly connect wetting and capillary condensation through a number of novel and distinct examples of fluid interfacial phenomena. This opens the possibility of tailoring the adsorption properties of solid substrates by sculpturing their surface shape.Comment: 6 pages, 4 figure

    Country differences in the diagnosis and management of coronary heart disease : a comparison between the US, the UK and Germany

    Get PDF
    Background The way patients with coronary heart disease (CHD) are treated is partly determined by non-medical factors. There is a solid body of evidence that patient and physician characteristics influence doctors' management decisions. Relatively little is known about the role of structural issues in the decision making process. This study focuses on the question whether doctors' diagnostic and therapeutic decisions are influenced by the health care system in which they take place. This non-medical determinant of medical decision-making was investigated in an international research project in the US, the UK and Germany. Methods Videotaped patients within an experimental study design were used. Experienced actors played the role of patients with symptoms of CHD. Several alternative versions were taped featuring the same script with patients of different sex, age and social status. The videotapes were shown to 384 randomly selected primary care physicians in the three countries under study. The sample was stratified on gender and duration of professional experience. Physicians were asked how they would diagnose and manage the patient after watching the video vignette using a questionnaire with standardised and open-ended questions. Results Results show only small differences in decision making between British and American physicians in essential aspects of care. About 90% of the UK and US doctors identified CHD as one of the possible diagnoses. Further similarities were found in test ordering and lifestyle advice. Some differences between the US and UK were found in the certainty of the diagnoses, prescribed medications and referral behaviour. There are numerous significant differences between Germany and the other two countries. German physicians would ask fewer questions, they would order fewer tests, prescribe fewer medications and give less lifestyle advice. Conclusion Although all physicians in the three countries under study were presented exactly the same patient, some disparities in the diagnostic and patient management decisions were evident. Since other possible influences on doctors treatment decisions are controlled within the experimental design, characteristics of the health care system seem to be a crucial factor within the decision making process

    Coupling models of cattle and farms with models of badgers for predicting the dynamics of bovine tuberculosis (TB)

    Get PDF
    Bovine TB is a major problem for the agricultural industry in several countries. TB can be contracted and spread by species other than cattle and this can cause a problem for disease control. In the UK and Ireland, badgers are a recognised reservoir of infection and there has been substantial discussion about potential control strategies. We present a coupling of individual based models of bovine TB in badgers and cattle, which aims to capture the key details of the natural history of the disease and of both species at approximately county scale. The model is spatially explicit it follows a very large number of cattle and badgers on a different grid size for each species and includes also winter housing. We show that the model can replicate the reported dynamics of both cattle and badger populations as well as the increasing prevalence of the disease in cattle. Parameter space used as input in simulations was swept out using Latin hypercube sampling and sensitivity analysis to model outputs was conducted using mixed effect models. By exploring a large and computationally intensive parameter space we show that of the available control strategies it is the frequency of TB testing and whether or not winter housing is practised that have the most significant effects on the number of infected cattle, with the effect of winter housing becoming stronger as farm size increases. Whether badgers were culled or not explained about 5%, while the accuracy of the test employed to detect infected cattle explained less than 3% of the variance in the number of infected cattle

    Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara)

    Get PDF
    Background Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. Results Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238–240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238–249.5), and crown-group Squamata originated around 193 Mya (176–213). Conclusion A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups

    A weak characterization of slow variables in stochastic dynamical systems

    Full text link
    We present a novel characterization of slow variables for continuous Markov processes that provably preserve the slow timescales. These slow variables are known as reaction coordinates in molecular dynamical applications, where they play a key role in system analysis and coarse graining. The defining characteristics of these slow variables is that they parametrize a so-called transition manifold, a low-dimensional manifold in a certain density function space that emerges with progressive equilibration of the system's fast variables. The existence of said manifold was previously predicted for certain classes of metastable and slow-fast systems. However, in the original work, the existence of the manifold hinges on the pointwise convergence of the system's transition density functions towards it. We show in this work that a convergence in average with respect to the system's stationary measure is sufficient to yield reaction coordinates with the same key qualities. This allows one to accurately predict the timescale preservation in systems where the old theory is not applicable or would give overly pessimistic results. Moreover, the new characterization is still constructive, in that it allows for the algorithmic identification of a good slow variable. The improved characterization, the error prediction and the variable construction are demonstrated by a small metastable system

    Simulation of the Radar Cross Section of a Noctuid Moth

    Get PDF
    Electromagnetic modelling may be used as a tool for understanding the radar cross section (RCS) of volant animals. Here, we examine this emerging method in detail and delve deeper into the specifics of the modelling process for a single noctuid moth, with the hope of illuminating the importance of different aspects of the process by varying the morphometric and compositional properties of the model. This was accomplished by creating a high-fidelity three-dimensional insect model by micro-CT scanning a gold-palladium-coated insect. Electromagnetic simulations of the insect model were conducted by applying different morphological and compositional configurations using the WiPL-D Pro 3D Electromagnetic Solver. The simulation results show that high-resolution modelling of insects has advantages compared to the simple ellipsoidal models used in previous studies. We find that the inclusion of wings and separating the composition of the body, wings, and legs and antennae have an impact on the resulting RCS of the specimen. Such modifications to the RCS are missed when a prolate spheroid model is used and should not be ignored in future studies. Finally, this methodology has been shown to be useful in exploring the changes in the RCS that result from variations in specimen size. As such, utilising this methodology further for more species will improve the ability to quantitatively interpret aeroecological observations of weather surveillance radars and special-purpose entomological radars

    Benzyne in V4334 Sqr: A Quest for the Ring with SOFIA/EXES

    Get PDF
    Large aromatic molecules are ubiquitous in both circumstellar and interstellar environments. Detection of small aromatic molecules, such as benzene (C6H6) and benzyne (C6H4), are rare in astrophysical environments. Detection of such species will have major implications for our understanding of the astrochemistry involved in the formation of the molecules necessary for life, including modeling the chemical pathways to the formation of larger hydrocarbon molecules. We conducted a search for the infrared 18 ÎĽm spectral signature of benzyne in V4334 Sgr with the Stratospheric Observatory for Infrared Astronomy (SOFIA)/Echelon-Cross-Echelle Spectrograph (EXES) finding no evidence for a feature at the sensitivity of our observations

    On SUSY GUTs with a degenerate Higgs mass matrix

    Get PDF
    Certain supersymmetric grand unified models predict that the coefficients of the quadratic terms in the MSSM Higgs potential should be degenerate at the GUT scale. We discuss some examples for such models, and we analyse the implications of this peculiar condition of a GUT-scale degenerate Higgs mass matrix for low-scale MSSM phenomenology. To this end we explore the parameter space which is consistent with existing experimental constraints by means of a Markov Chain Monte Carlo analysis.Comment: 31 pages, 27 figures; v2: typos correcte
    • …
    corecore