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1 Introduction

The quadratic part of the Higgs potential in the Minimal Supersymmetric Standard Model
(MSSM) may be written as

V = m2
1|H1|2 +m2

2|H2|2 +m2
3(H2H1 + h.c.). (1.1)

Here m2
1,2 are given in terms of the soft SUSY breaking masses m2

H1,2
and the supersymmet-

ric Higgsino mass µ as m2
1,2 = m2

H1,2
+ |µ|2. The soft parameter m2

3 is often also called Bµ;
the phases are defined such that m2

3 > 0 at the electroweak scale. H1,2 are the lowest com-
ponents of the down-type and up-type Higgs superfields (which we will also denote by H1,2).

In models of gravity-mediated SUSY breaking, the Higgs mass parameters are usu-
ally generated at the GUT scale or the Planck scale by some mechanism which breaks
supersymmetry. (Even the µ parameter, although it preserves supersymmetry, should be
generated by the SUSY-breaking mechanism in order to explain why it is of the same order
of magnitude as the other Higgs mass parameters.) They should then be evolved down
to the electroweak scale according to their renormalization group equations. At the scale
where the Higgs potential is minimized, they should satisfy the well-known inequalities

m2
1m

2
2 −m4

3 < 0, m2
1 +m2

2 − 2m2
3 > 0. (1.2)

The first inequality ensures that electroweak symmetry is broken, and the second one
guarantees that the Higgs potential is bounded from below even in those directions in field
space where the quartic potential vanishes.

An interesting property of certain UV-scale models is the relation

m2
1 = m2

2 = ±m2
3, (1.3)
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holding at the UV scale, where the SUSY-breaking terms are generated. This is the defining
relation for the class of models we are interested in, models with a degenerate Higgs mass
matrix (DHMM). It is typically encountered in models where both MSSM Higgs doublets
originate from a single chiral adjoint Φ of the GUT group G, by a decomposition into
Standard Model representations according to

Ad(G) → (1,2)−1/2 ⊕ (1,2)1/2 ⊕ . . .
Φ → H1 ⊕ H2 ⊕ . . .

(1.4)

Suppose that there is some additional structure ensuring that, while the real components
Φ† + Φ can acquire a tree-level mass from SUSY breaking, the Higgs field components of
the imaginary parts Φ† − Φ remain massless. For instance, they could be the (pseudo)-
Goldstone bosons of a spontaneously broken (approximate) global symmetry [1, 2] or a
mass term could be forbidden by higher-dimensional gauge invariance [3, 4]. Then the
quadratic Higgs potential will be of the form

V = m2(H1 +H2)(H1 +H2). (1.5)

Thus the relation eq. (1.3) obviously holds. A subtlety lies in the definition of the sign
of m2

3, which may need to be changed by a field redefinition H1 → −H1 to ensure that
m2

3 > 0 after running to the electroweak scale.

In realistic models in which the UV-scale equalities eq. (1.3) apply, renormalization
group running should turn them into the IR-scale inequalities eq. (1.2). At the same time
the correct Standard Model couplings and masses should be reproduced, and the spectrum
of sparticle and Higgs masses should not be in conflict with experimental bounds. Whether
this is possible for a given UV-scale model can only be found out by a numerical analysis.
As discussed in [3, 4], it crucially depends on the parameters of the sfermion sector.

In a previous paper [4] a particular subclass of such models was investigated in detail
with respect to their phenomenological prospects. More precisely, it was shown that in
five-dimensional orbifold GUTs with gauge-Higgs unification and radion-mediated SUSY
breaking, fully realistic MSSM spectra can be found. Such models are well motivated as
anisotropic limits of heterotic string compactifications.

Since the class of DHMM models is in fact quite large and diverse, it is clearly of inter-
est to study in detail under what conditions on the soft terms realistic MSSM vacua and a
viable low-scale phenomenology can result, and what are the consequences for experiment.
This is the purpose of this paper. In section 2 we first discuss classes of SUSY GUTs
which imply DHMM boundary conditions. In section 3 we elaborate on RGE running and
resulting soft term patterns. In section 4 we then present results of a Markov Chain Monte
Carlo (MCMC) analysis of two variants of DHMM models. Finally section 5 contains our
conclusions.
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2 Models

2.1 Gauge-Higgs unification in 5d

An interesting class of example models in which eq. (1.3) holds is given by 5d orbifold
GUTs with gauge-Higgs unification [3–6]. The fifth dimension is compactified on an interval
whose size is given by the inverse GUT scale, and the GUT group is broken to the MSSM
gauge group by boundary conditions. In terms of 4d superfields, the 5d gauge multiplet
decomposes into a 4d gauge superfield V = −Aµσµθθ̄ + · · · (µ = 0, . . . , 3) and a chiral
adjoint Φ = Σ+iA5+· · · (where we have only written the leading terms in the θ-expansion,
and V is in Wess-Zumino gauge). Φ contains the MSSM Higgs fields as in eq. (1.4). We can
now choose a Kähler-Weyl frame such that the superpotential is independent of Φ when
setting the MSSM matter fields to zero. By 5d gauge invariance, the Kähler potential
can then only depend on the combination Φ† + Φ on the quadratic level. The orthogonal
combination Φ† − Φ ∼ A5, being a 5d gauge field, is protected from getting a mass term.

This can be seen explicitly as follows: Suppose for the moment that the gauge sym-
metry were just U(()1). The action is invariant under 5d gauge transformations

V → V + Λ + Λ̄, Φ → Φ + ∂5Λ. (2.1)

Here Λ is an x5-dependent chiral superfield. The inhomogeneous transformation behaviour
of Φ shows that Φ cannot appear in the superpotential if W is to be 5d gauge-invariant,
when setting the MSSM matter fields to zero. That is to say, it is always possible to shift
harmonic terms from the Kähler potential into the superpotential, and any terms from W

into K, but a particularly natural formulation is one where W and K are separately 5d
gauge invariant. Consequently Φ cannot appear in W (except in combination with other
charged fields such as matter fields, which only give rise to Yukawa terms irrelevant to the
Higgs potential, or light exotics, which we assume to be absent).

The crucial observation is now [4] that in this manifestly 5d gauge-invariant formula-
tion, the Φ-dependent part of K must be a function of the unique gauge-invariant combi-
nation

Φ + Φ− ∂5V. (2.2)

This combination reduces to Φ+Φ on the zero-mode level. In other words, if there is no lin-
ear term in Φ, the low-energy effective Kähler potential for the zero modes has the structure

K = K
(
Zi, Z

̄
)

+ Ỹ
(
Zi, Z

̄
) (

Φ + Φ
)2 + · · · (2.3)

Here the Zi denote collectively the compactification moduli and general hidden sector
fields. K cannot depend on the orthogonal combination A5 = Im Φ = (Φ−Φ)/2 essentially
because the transformation law for Im Φ involves Im Λ, whereas the transformation law for
V only involves Re Λ, and therefore the gauge variation of Im Φ cannot be cancelled.

A similar structure is encountered in realistic models. The gauge symmetry should of
course contain the Standard Model gauge group, and Φ should contain the MSSM Higgs
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superfields, so the abelian example is too simple. In a non-abelian model, the 5d gauge
transformations read

eV → eΛ†
eV eΛ, Φ → e−Λ(∂5 + Φ)eΛ. (2.4)

Gauge-invariant operators involving Φ can be constructed from the covariant derivative
∇5 = ∂5 + Φ [7]. In particular the operator

− e−V∇5e
V = Φ + Φ† − ∂5V + (commutators) (2.5)

(where ∇5 acts on eV as ∇5e
V = ∂5e

V −Φ†eV − eV Φ) is the appropriate non-abelian gen-
eralization of (2.2). Note that it is not gauge invariant by itself but transforms analogously
to a field strength superfield:

e−V∇5e
V → e−Λ e−V∇5e

V eΛ. (2.6)

The lowest-order gauge invariant operator one can construct is in fact [7]

tr
(
e−V∇5e

V
)2

= tr
(

Φ + Φ†
)2

+ (terms involving V ) (2.7)

since tr (e−V∇5e
V ) vanishes identically, as can be seen from eq. (2.5).

As in the abelian case, any V -independent terms cannot depend on the orthogonal
combination Φ− Φ† since it transforms as

Φ− Φ† → e−ΛΦeΛ − h.c.+ ∂5

(
Λ− Λ†

)
, (2.8)

while the gauge field transforms as

V → V + Λ + Λ† + (terms involving V ). (2.9)

Therefore there is no function of V whose gauge variation can cancel the inhomogeneous
piece in eq. (2.8).

We conclude that again W is Φ-independent, and that K has the structure

K = K
(
Zi, Z

̄
)

+ Ỹ
(
Zi, Z

̄
)

tr
(

Φ + Φ†
)2

+ · · · (2.10)

The resulting quadratic Lagrangian for the zero modes of Φ can then be written as

Lquad =
∫
d4θ ϕϕY

(
Zi, Z

̄
)

(H1 +H2)(H1 +H2). (2.11)

Here ϕ = 1 + Fϕθ2 is the conformal compensator of 4d supergravity, a non-dynamical chiral
superfield whose F -term is the scalar auxiliary field of the 4d gravitational multiplet; its
expectation value parameterises SUSY breaking in the 4d gravitational background. A
non-vanishing Fϕ or non-vanishing F i will give rise to an effective Higgs mass matrix
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Q1,2, L1,2

Q3, L3

x5 = 0 brane x5 = πR brane

Aµ, Φ

Figure 1. An unwarped model with gauge-Higgs unification. The field Φ containing the Higgs fields
and the 4d gauge fields (green dashed curve) are bulk fields with a flat profile. Third generation
matter fields (red dot-dashed curve) are slightly localized towards the x5 = πR brane. Matter fields
of the first two generations (blue dotted curve) are effectively confined to the brane.

satisfying the relations eq. (1.3), with mass parameters1

m2
H1

= m2
H2

= −F iF ̄ ∂2

∂Zi∂Z
̄ logY,

±µ = F
ϕ̄ + F

ı̄ ∂

∂Z
ı̄ logY,

±Bµ =
∣∣∣∣Fϕ + F i

∂

∂Zi
logY

∣∣∣∣2 − F iF ̄ ∂2

∂Zi∂Z ̄
logY.

(2.12)

The relations eq. (1.3) are a direct consequence of 5d gauge symmetry, which is however
not a symmetry of the 4d effective theory (but instead mixes the KK modes). Eq. (1.3) is
therefore valid at the compactification scale, but it will be modified by radiative corrections
below this scale. This is indeed necessary in order for the conditions eq. (1.2) to be satisfied
as strict inequalities, after renormalization group running to the electroweak scale.

Models of this kind can be augmented by bulk hypermultiplets whose zero modes
give the MSSM matter fields, and with brane fields with appropriate superpotentials to
decouple unwanted exotics [5]. 4d Yukawa couplings are obtained from 5d gauge couplings,
with their precise values controlled by the localization properties of the zero-mode wave
functions, which in turn are tunable through 5d mass terms. The full model has the
massless spectrum of the MSSM. With the additional assumption that SUSY breaking
mediation is dominated by the F -term of the radion modulus, it can give rise to realistic
phenomenology [4]. See figure 1 for a sketch of this kind of model.

By similar arguments as above, the relations eq. (1.3) also apply in a large class of
heterotic string orbifold models [8–11] with gauge-Higgs unification, if their moduli space

1As already alluded to, the signs of µ and m2
3 can be simultaneously flipped by a superfield redefinition

H1 → −H1 (together with a corresponding redefinition of the down-type matter superfields to keep the

Yukawa couplings intact). We adopt the usual convention that m2
3 > 0 at the weak scale. Since the sign

of m2
3 can change during its renormalization group evolution, this implies that the proper high-scale sign

in eq. (2.12) is only fixed after specifying the rest of the model and tracking its RG running. The relation

eq. (1.3) thus can be written as m2
1 = m2

2 = εH m2
3 with εH = ±1 to be determined accordingly.

– 5 –
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Q1,2, L1,2

Q3, L3

UV brane IR brane

Aµ

Φ

Figure 2. A warped holographic GUT model: Φ (light green dashed curve) is an IR brane field.
Matter fields are localized towards the UV brane, only slightly so for the third generation but more
pronounced for the first two generations.

admits a corresponding 5d orbifold GUT limit (for details see e.g. [4, 12]). This is regardless
of whether or not this anisotripic limit is actually realized at the point where the mod-
uli are stabilized. The structure enforced by higher-dimensional gauge invariance persists
independently.

Radion mediation (corresponding to “modulus domination” in the above-mentioned
string models) is a simple and elegant possibility to parameterise SUSY breaking in such
models. However, in general there may be other contributions, in particular from brane-
localized fields (see e.g. [3]). This allows for more general patterns of soft masses than the
ones considered in [4], providing a strong motivation for the more general parameter space
scan which we perform in this paper.

2.2 Holographic GUTs

A somewhat different example is the holographic GUT model of Nomura, Poland and
Tweedie [13]. This model may be described in the “gravity picture” as a 5d theory on
a slice of AdS5 space between two 4d branes, a Planck brane (or UV brane) and a GUT
brane (or IR brane). The bulk gauge symmetry is SU(6). The MSSM Higgs fields arise
from a GUT-brane chiral superfield Φ in the adjoint.2 SU(6) is spontaneously broken to
SU(4)×SU(2)×U(1) by the Φ superpotential on the GUT brane, and explicitly broken to
SU(5)× U(1) by boundary conditions on the Planck brane. In the 4d effective theory the
gauge group is then given by the intersection of SU(4)×SU(2)×U(1) and SU(5)×U(1) in
SU(6), which is the Standard Model gauge group apart from an extra U(1). Matter fields
arise from 5d bulk fields. This model is sketched in figure 2.

Regarding SU(6) as a spontaneously broken global symmetry of the 4d theory, the
Higgs fields are massless in the absence of SUSY breaking because their imaginary parts
are Goldstone bosons associated with the breaking to SU(4)×SU(2)×U(1), and their real
parts are then protected by SUSY. SU(6) is also broken explicitly by boundary conditions
on the Planck brane (or on the level of the 4d theory by gauging only its SU(5) × U(1)
subgroup), and therefore the Higgs fields are merely pseudo-Goldstone bosons. However,

2In [13] this chiral adjoint is denoted by Σ.

– 6 –
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this explicit breaking gives tree-level masses to only 12 out of the 16 Goldstone modes.
In other words, if SU(5) × U(1) ⊂ SU(6) is gauged, only 12 of the Goldstone bosons
will be eaten by the Higgs mechanism, corresponding to the 12 broken generators in
SU(5) × U(1) → SU(3) × SU(2) × U(1) × U(1). The remaining four Goldstone modes
and their complex partners form two massless weak doublets which are identified with the
MSSM Higgs fields. (For some earlier work along these lines, see [1, 2].)

Provided that the SUSY breaking mechanism respects this symmetry breaking pattern,
it will lead to eq. (1.3) because once more the fields from the combination Φ†+Φ can pick up
a tree-level mass term, while the (pseudo-) Goldstone bosons in Φ† − Φ remain massless.
Since the SU(6) symmetry is explicitly broken, radiative corrections can again lift the
relations of eq. (1.3) below the SUSY breaking scale, as required for phenomenology.

Localizing the Higgs fields on one of the branes rather than in the bulk naturally
allows for the possibility that they are “sequestered” from the supersymmetry breaking
fields Zi, which could be confined to the other brane. Writing the effective quadratic Higgs
Lagrangian as in eq. (2.11), this means that there exists a frame in which

∂Y
∂Zi

F i = 0. (2.13)

In that case any tree-level Higgs mass terms should arise purely from gravitational effects.
We are parametrising these by the chiral compensator ϕ. Note that this type of scenario
includes the case of radion mediation, i.e. taking the dominant source for SUSY breaking to
be the F -term of the radion modulus, since one can always redefine ϕ such that the radion
does not couple to IR brane fields. It is well-known that Fϕ alone cannot induce scalar
soft masses classically (in accord with eq. (2.12)), with the leading contribution to m2

H1

and m2
H2

coming from anomaly mediation and thus suppressed by a loop factor [14, 15].
Fϕ will however give rise to a µ and a Bµ term at tree-level. One thus obtains a special
case of eqs. (1.3) and (2.12):

|µ| ≈ |Fϕ|, |Bµ| ≈ |Fϕ|2, |m2
Hi
| � |Fϕ|2. (2.14)

Moreover, in the holographic GUT model with SUSY breaking on the UV brane there is
no reason to expect the matter soft terms for the first two generations to be suppressed.
The wave functions of the first and second generation have in fact similar to slightly larger
overlaps with the UV brane, as compared with those of the third generation. This is be-
cause we are generating the Yukawa hierarchy from hierarchical wave function values on
the IR brane, as depicted in figure 2.

Needless to say, this model also allows for supersymmetry breaking on the IR brane. In
that case Higgs soft masses will generically be induced by direct contact interactions, and
the ordering of sfermion masses will roughly correspond to the Yukawa hierarchy. In fact
in general one can have a variety of different contributions to SUSY breaking mediation
from brane-localized fields, as well as from the radion and from ϕ.

– 7 –
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3 Soft term patterns

In the common public SUSY spectrum generators, µ and Bµ at the GUT scale are computed
according to their renormalization group equations from their IR-scale values, which in turn
are calculated from mZ and the given tanβ. Here we use SOFTSUSY [16]. Following [4], we
implement the Higgs mass relation eq. (1.3) by iteratively adjusting the Higgs soft masses,

m2
H1

= m2
H2
→ εHBµ − |µ|2 (3.1)

at MX = MGUT. Here εH = ±1 takes care of the sign ambiguity in Bµ which we men-
tioned in the previous section. Throughout this analysis we assume gaugino mass unifi-
cation, M1 = M2 = M3 ≡ M1/2 at MGUT. The free parameters in our study are thus
M1/2(MGUT), tanβ(MZ), the two signs εH and sign(µ), and the sfermion soft terms at
MGUT. We take the latter to be flavour-diagonal.

Whether EWSB and a viable phenomenology can be obtained strongly depends on the
sfermion soft terms. Two limiting cases are of particular interest:

• assuming a common sfermion mass m0 and a common trilinear coupling A0. This
makes the DHMM models a subclass of non-universal Higgs mass models (see e.g. [17]
and references therein) with m2

H1
= m2

H2
(“NUHM1” in the terminology of [18]);

• no-scale boundary conditions for the first and second generation, m0(1, 2) =
A0(1, 2) ≡ 0, but allowing for arbitrary soft terms in the third generation.

The first case may be considered as representative for a generic scenario with all sfermion
soft terms of the same order of magnitude, whereas the second case represents models with
hierarchical soft terms reflecting the Yukawa hierarchy. As we have seen in section 2, both
these scenarios are well motivated from the model-building point of view. Moreover, it
is interesting to investigate whether the stronger condition of eq. (2.14), m2

H1,2
→ 0 and

|µ|2 → |Bµ|, can be realized.
It turns out that the following patterns emerge in the soft terms:

1. in almost all of the admissible regions of parameter space, εH corresponds to the
GUT-scale sign of Bµ;

2. for sign(µ) = +1, Bµ has almost always the same sign as At at the GUT scale (and
the opposite one if sign(µ) = −1);

3. for sign(µ) = +1, the stricter relation

m2
H1

= m2
H2

= 0, εH Bµ = |µ|2 at MGUT (3.2)

can only be satisfied with εH = +1.

These observations can be explained by a close inspection of the relevant RGEs, as we will
now detail.

– 8 –
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To start with, it is useful to recall the dominant contributions to the one-loop RG
evolution of the stop trilinear At. These involve At itself and the gluino mass:

16π2 d

dt
At = 12 |yt|2At +

32
3
g2

3 M3 + · · · (3.3)

The large gluino contribution will drive At to a large negative value towards “late times”
(i.e. towards the low energy scale), until it is compensated for by the first term in eq. (3.3).

Now concerning point 1., if sign(Bµ) does not match with εH at the GUT scale,
this implies that the GUT-scale m2

1 and m2
2 are negative. The running of m2

1 and m2
2 is

almost exclusively due to the running of the soft masses m2
H1

and m2
H2

, since µ is approx-
imately constant. The dominant terms in the one-loop RGE for the up-type Higgs soft
mass-squared are

16π2 d

dt
m2
H2

= 6 |yt|2
(
|At|2 +m2

H2
+m2

Q3
+m2

U3

)
− 6 g2

2 |M2|2 + · · · , (3.4)

where m2
U3

and m2
Q3

are the soft masses of the third generation up-type squarks and squark
doublets respectively. In scenarios like the CMSSM, by scalar mass universality the terms
in parentheses are typically positive. Thus m2

2 is driven to lower values as the RG scale
decreases, assisted also by the top Yukawa coupling and |At| growing large. Eventually ra-
diative electroweak symmetry breaking is triggered. Most of the DHMM parameter space
also has this property. There is only a tiny region with initially small At, very large neg-
ative m2

H1,2
, small or negative squark soft masses-squared, and sizeable M1/2, in which

m2
2 runs up significantly at first. In that case it can be driven to positive values even if it

starts out negative, and electroweak symmetry breaking can be triggered later when the At
contribution in eq. (3.4) dominates and when also the squark masses have grown positive.

Concerning point 2. above, note that Bµ at the low scale should be somewhat small
compared to the typical soft masses. This is in order to satisfy the electroweak symmetry
breaking conditions eq. (1.2), and in particular to have at least moderately large tanβ
(tanβ & 5 say). Let us for now assume positive µ. The one-loop RGE of Bµ is dominated
by the At and gaugino contributions:

16π2 d

dt
Bµ = 6µAt |yt|2 + 6µM2 g

2
2 + · · · (3.5)

The gaugino contribution tends to dominate the RG evolution of Bµ at scales close to
the GUT scale, driving Bµ down. However, eventually At itself will run large and negative
because of the gluino contribution to eq. (3.3). Far in the IR it will thus primarily drive the
Bµ evolution, causing Bµ to run up instead. For sizeable and positive initial GUT-scale At,
this latter effect will be less important. But for small or even negative GUT-scale values,
At will quickly evolve towards large negative values, and thus dominate over the gaugino
term in eq. (3.5).

We conclude that positive starting values for the GUT-scale At are preferred if Bµ > 0
(in which case Bµ should mainly run down towards the electroweak scale, to end up small)
and small or negative values are preferred if Bµ < 0 (in which case it should mainly run
up, to end up positive). For negative µ, the signs are reversed. These correlations are

– 9 –
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Figure 3. A set of slices through the four branches of DHMM parameter space with M1/2 = 1 TeV,
tanβ = 10, and m0 = 500 GeV. For the panels on the left, regions of larger A0 do not lead to
electroweak symmetry breaking, as can be seen from the pseudoscalar Higgs mass m2

A approaching
zero. The same is true for regions of smaller A0 for the panels on the right. The upper panels show,
as explained in the text, that for sign(µ) = +1 the GUT-scale sign of At is equal to the GUT-scale
sign of Bµ in almost all of the allowed regions. The lower panels show that this correlation is
reversed if sign(µ) = −1. As also explained in the text, m2

H1,2
= 0 is only possible if εH = +1 and

sign(µ) = +1 (top right panel). Finally note that there is a tiny slice of the allowed parameter
space where εH does not correspond to sign(Bµ) at the GUT scale. In this region |At| is small and
m2
H2

is large and negative as expected.
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Figure 4. Contours of constant m2
H1,2

(full red lines) and |µ| (dashed blue lines) at MGUT in the
M1/2 versus A0 plane, for tanβ = 10 and m0 = 500 GeV. Grey regions do not lead to electroweak
symmetry breaking, light yellow regions are excluded by b → sγ (at 2σ), and dark yellow regions
have mh < 114 GeV, with the white lines indicating mh = 111 GeV.

illustrated in figure 3 with the help of some slices through the parameter space, at fixed
sfermion and gaugino masses, fixed tanβ, and universal trilinears.

Our choice for the soft masses in figure 3 may seem rather high, but as can be seen
from figure 4, satisfying the LEP Higgs bound requires fairly large M1/2, the more so the
larger A0 is.

Finally let us come to point 3.: The At parameter also enters the m2
H2

RGE eq. (3.4).
A large |At| will accelerate the decrease of m2

H2
when running down from the GUT scale,

which is of course a particularly severe effect if At starts out negative, i.e. if εH = −sign(µ).
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Then m2
H2

will run negative too quickly, unless there is some other contribution to coun-
terbalance the effect of At. Large gaugino masses could provide such a contribution, but
they would again slow down the Bµ evolution, as is evident from eq. (3.5). If we allow for
non-vanishing Higgs soft masses-squared, they can in particular be negative and thus coun-
teract the At effect in eq. (3.4). However, in the case that m2

H1,2
is constrained to vanish, At

should be positive at the GUT scale to minimize its effect on the m2
H2

running. In addition,
small (or even negative) GUT-scale squark masses-squared are preferred to slow down the
m2
H2

evolution. Indeed, in figures 3 and 4 the case m2
H1,2
→ 0 occurs only for εH = sign(µ)

and requires large positive A0 to start with, leading to small negative At at the EW scale.
As can also be seen from figure 4, large positive A0 leads to a tension with the direct

search bound from LEP of mh > 114.4 GeV at 95% C.L. [19], even when taking into account
a 2–3 GeV theoretical uncertainty [20] on the calculation of mh in the MSSM. This can be
understood as follows: At lowest order, the light CP-even Higgs boson of the MSSM is at
most as heavy as the Z0 boson, m2

h ≤ m2
Z cos2 2β. Radiative corrections have to lift mh

above the LEP limit. The dominant effect is proportional to the fourth power of the top
Yukawa coupling, y4

t , and comes from an incomplete cancellation of top and stop loops.
This increases mh approximately to

m2
h . m2

Z +
3g2m4

t

8π2m2
W

[
ln
(
M2
S

m2
t

)
+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
+ · · · , (3.6)

where
M2
S ≡

1
2

(
m2
t̃1

+m2
t̃2

)
, Xt ≡ At − µ cotβ . (3.7)

For large tanβ and large |µ|, also bottom and sbottom loops become important, giving an
analogous contribution proportional to y4

b . For details see, e.g., [21] and references therein.
The logarithmic sensitivity to the average stop mass MS in eq. (3.6) suggests that heavy
stops are preferred in order to render mh large enough. However, this sensitivity is rather
mild, and the dependence on the stop mixing parameter Xt can be at least as important.
Indeed, mh initially increases with |Xt| and reaches maximal values for Xt = ±

√
6MS ;

this is known as the ‘maximal mixing’ or mmax
h case, see again [21]. Therefore a large

low-scale |At|, together with moderately large tanβ, is favoured to satisfy the LEP Higgs
mass bound. This is exactly what we find in the right-hand side panels of figure 4: For too
large starting values of At, the low-scale |At| will be too small (recall that At generically
runs towards negative values) and the Higgs mass bound becomes important.

The DHMM model with universal sfermion soft terms is a special case of a NUHM
model. Figure 5 shows for comparison the dependence of m2

A, µ2 and Bµ in a general
NUHM1 model with m2

H1,2
= 0. The other parameters are as in figure 3. The CMSSM

limit with m2
H1,2

= m2
0 gives almost the same picture, the only difference being a slightly

larger m2
A and slightly smaller µ2. Note that there is only one “DHMM point” in figure 3

(with meeting |µ|2 and Bµ curves), which occurs for µ > 0. Away from this point where
the models coincide, DHMM has a much larger |µ| and smaller mA than NUHM1 (or the
CMSSM), cf. figure 3. In particular, in the DHMM case mA becomes small for small |A0|,
and we can have mA ≈ M1/2 even for small tanβ. This will be important later when we
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Figure 5. Higgs mass parameters in the MSSM with non-universal Higgs masses, for a universal
gaugino mass M1/2 = 1 TeV, a universal sfermion mass m0 = 500 GeV, tanβ = 10, and vanishing
Higgs soft masses. Note that there is only a “DHMM point” (with meeting |µ|2 and Bµ curves)
for µ > 0.

consider the neutralino relic density. At this stage we just remark that in figure 4 s-channel
annihilation through the Higgs funnel occurs for small |A0| . 100− 300 GeV.

Let us now explore the consequences of non-universal third generation soft terms. This
is interesting in particular for the gauge-Higgs unification models discussed in section 2.1,
where we expect vanishing first and second generation soft masses, m0(1, 2) ≈ 0. In
this case we have roughly m2

ẽR
≈ (0.39M1/2)2 − 0.052SGUT, and m2

ẽL
≈ (0.68M1/2)2 +

0.026SGUT, which has to be compared to mχ̃0
1
≈ 0.43M1/2. Here, SGUT is the GUT-scale

value of the hypercharge S parameter,

S = (m2
H2
−m2

H1
) + Tr(m2

Q − 2m2
U +m2

D +m2
R −m2

L). (3.8)

We see that a non-zero and negative SGUT of about −(0.8M1/2)2 to −(3.3M1/2)2 is
necessary if one wants the neutralino to be the lightest SUSY particle (LSP). Since we
have m2

H1
= m2

H2
in DHMM, the way to ensure a neutralino LSP is non-universality of

the third generation, as illustrated in figure 6.3 We can see that taking a slice along
mU3 = mQ3 = mD3 , as we have done in the previous plots, indeed results in qualitatively
similar patterns as the more general case in which the squark soft masses are split. On the
other hand, negative soft masses-squared can give much smaller m2

H1,2
and |µ|. This is of

interest in particular for εH = sign(µ) = +1, where one can achieve a mixed bino-higgsino
LSP (see the dark matter discussion in the next section). Note moreover that in the r.h.s.
plots of figure 6, m2

H1,2
is very sensitive to A0, while µ does not vary much when passing

from A0 = M1/2 to A0 = 3M1/2. This is in accord with figure 3.

3We use the notation mU3 ≡ m2
U3/

q
|m2

U3
|, so the sign of mU3 is actually that of m2

U3 , and analogously

for mQ3 etc.

– 13 –



J
H
E
P
0
8
(
2
0
1
0
)
0
9
6

Figure 6. Contours of constant m2
H1,2

(full red lines) and |µ| (dashed blue lines) at MGUT in the
mU3 versus mQ3 plane, for M1/2 = 1 TeV, tanβ = 10 and vanishing 1st/2nd generation soft terms.
Moreover, µ > 0, εH = ±1, and A0 = ±M1/2 (upper row) and A0 = ±3M1/2 (lower row). Black
regions do not lead to electroweak symmetry breaking, gray regions have a slepton LSP, and white
regions a neutralino LSP; the light yellow stripe is excluded by b→ sγ at 2σ, while the dark yellow
stripes have mh < 114 GeV. µ < 0 gives qualitatively very similar results.

We conclude this section with a few remarks on potentially dangerous tachyonic direc-
tions. In our analysis we have permitted tachyonic GUT-scale masses for both the Higgs
and the sfermion fields. This is well-known to generally lead to charge- and colour-breaking
minima in the potential, as well as to directions in field space which are unbounded from
below (at tree-level and without higher-dimensional operators); see, for instance, [22].

While tachyonic scalar masses appear to rule out a large part of the parameter space at
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first sight, two points must be considered. First, a careful analysis is required in each case
to determine if such dangerous vacua really are present. In particular, calculations using
only the RG-improved tree-level potential may give unreliable results if the field VEVs are
found to be vastly different from the renormalization scale, because of the presence of large
logarithms in the loop corrections. Second, these vacua need not be dangerous even if they
are present. If the tunnelling rate from our false vacuum is sufficiently small, our vacuum
may well be effectively stable on cosmological timescales. It then depends on early-universe
cosmology whether or not it is preferred for our universe. See [23] for a recent analysis of
the CMSSM and of NUHM models in that context, and [24] for a recent analysis of the
cosmological lifetime of related Higgs-exempt no-scale models.

A detailed investigation of charge- and colour-breaking minima is beyond the scope of
this work. We therefore merely stress that we expect them to appear in large regions of
parameter space, but depending on their lifetime and on the cosmological scenario, these
regions may still be acceptable phenomenologically.

4 Markov Chain Monte Carlo analysis

So far we have only considered the constraints from mh and b → sγ, and taken one- or
two-dimensional slices through the parameter space. In order to take into account more
constraints and in particular to find regions of parameter space where the neutralino LSP
is a good dark matter candidate, we next perform a Markov Chain Monte Carlo scan of
DHMM models. As above, we consider the two cases of (i) universal sfermion soft terms
and (ii) vanishing first/second but non-universal third generation soft terms.

MCMC is an efficient method to probe a large-dimensional parameter space, and to
gain information about it by using Bayesian statistics. The basic idea is to set up a
random walk, starting at some parameter point and proposing a candidate next point
at random nearby. This candidate point is then accepted or rejected at random, with an
acceptance probability depending on its likelihood compared to the likelihood of the original
point. Parameter points which are more likely to reproduce existing experimental data and
constraints within errors have a greater probability of being accepted. If accepted, the new
point is chosen as the starting point and the procedure is iterated. Otherwise it is repeated
with the old starting point. A properly set-up ensemble of Markov chains should eventually
fill out all the allowed parameter space, with a high density of points in those regions which
are best compatible with existing measurements. In the sense of Bayesian statistics, the
distributions of points are interpreted as probability density functions. MCMC provides a
simple means to marginalise these distributions and to evaluate probability regions.

The setup and procedure of our MCMC analysis closely follows [25], and we refer the
reader to this paper for technical details (see also [26–29]). Here we just explain the con-
straints and priors used in our analysis. We apply the limits from direct SUSY [30] and
Higgs [19, 31] searches at LEP. The computation ofmh suffers from a theoretical uncertainty
which has been estimated to amount to up to 2–3 GeV [20]. This theoretical error is most
likely non-Gaussian and can give an underestimation as well an overestimation of mh. We
therefore use the direct experimental search limit for a SM-like Higgs of mh > 114.4 GeV at
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Observable Limit Likelihood function Ref.
mh > 114.4 L1(x, 114.5,−0.6) [31]
mt 173.1± 1.3 L2(x, 173.1, 1.3) [32]
mW 80.398± 0.025 L2(x, 80.398, 0.025) [33]
BR(b→ sγ) (3.52± 0.34)× 10−4 L2(x, 3.52× 10−4, 0.34× 10−4) [34, 35]
BR(Bs → µ+µ−) ≤ 5.8× 10−8 L1(x, 5.8× 10−8, 5.8× 10−10) [36]
R(Bu → τντ ) 1.11± 0.52 L2(x, 1.11, 0.52) [34]
∆aSUSY

µ ≤ 4.48× 10−9 L1(x, 4.48× 10−9, 4.5× 10−11) [37]
Ωh2 0.1131± 0.0034 L2(x, 0.113, 0.011) [38]
SUSY mass limits LEP limits 1 or 10−9 [30]

Table 1. Observables used in the likelihood calculation. L1 and L2 are defined in eq. (4.1).

95% C.L. without further modification. One should however bear in mind that the favoured
regions of parameter space may in fact be somewhat larger (where the Higgs mass is under-
estimated by the calculation) or smaller (where it is overestimated) than the ones we find.

Regarding the anomalous magnetic moment of the muon, we limit our scans to µ > 0,
which gives a positive SUSY contribution, but do not require that SUSY explains the dis-
crepancy between the measurement and SM prediction; instead we only apply an upper
limit on ∆aSUSY

µ .
The complete set of constraints applied is given in table 1. For observables on which

there is merely an experimental upper or lower bound available, we use a Fermi likelihood
function L1. For quantities which have been measured, we use a Gaussian likelihood
function L2. The total likelihood of a parameter point is the product of all individual
likelihoods, L =

∏
n(Li)n. In the notation of table 1, we have

L1(x, x0, dx) =
1

1 + exp[(x− x0)/dx]
, L2(x, x0, dx) = exp

[
−(x− x0)2

2 dx2

]
. (4.1)

The neutralino relic density, the B-decay branching ratios, ∆aSUSY
µ , and the SUSY mass

limits are evaluated with micrOMEGAs [39, 40].4

We choose to work with two different prior probability distributions. Our first prior
is flat in the GUT-scale soft parameters and in tanβ. That is, within a certain fixed
range, any value for a given parameter is treated as equally probable. As a second prior,
for comparison, we use a “naturalness prior” [26]: Since a prior choice ultimately reflects
theoretical prejudice as to what parameter choices should be more or less likely, we find
it appropriate to use a prior which disfavours the more fine-tuned parameter points. The
main source for fine-tuning in the MSSM is caused by the sensitivity of the electroweak

4In the likelihood function for Ωh2, we use the 2008 central value of [38] with a Gaussian width of about

10%. This is to approximately account for uncertainties from the cosmological model, from the data sets

used, and from the SUSY spectrum calculation. It is consistent with the most recent determination of Ωh2

from seven-year WMAP data, published in early 2010 [41, 42].
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scale to parameter variations. We therefore use a fine-tuning measure c defined as [43]

c = max
i

∣∣∣∣∂ lnmZ

∂ ln ai

∣∣∣∣ . (4.2)

Here {ai} includes all GUT-scale soft masses and trilinear soft terms, as well as µ. With
the naturalness prior, every parameter point is then weighted with a measure 1/c, thus
penalizing the more fine-tuned ones.

Before presenting the results, let us comment on the viable dark matter regions. In
general in the MSSM there are only a few mechanisms that provide the correct amount of
neutralino annihilation consistent with cosmological observations (see e.g. [44] for a review).
In the DHMM case we consider here, we expect:

A) Coannihilation with sleptons. This requires small neutralino-slepton mass differences
of roughly 10 − 1 GeV for mχ̃0

1
∼ 100 − 500 GeV; for heavier LSPs, coannihilation

with sleptons alone is not efficient enough. Another possibility is coannihilation with
light t̃1 or b̃1, which is efficient for larger mass differences, or larger LSP masses.

B) Annihilation through s-channel pseudoscalar Higgs exchange. Here the key quantities
are the distance from the A pole, mA−2mχ̃0

1
, and the width of the A resonance. The

process is efficient for a bino LSP, although some higgsino admixture is necessary to
provide the χ̃0

1χ̃
0
1A coupling.

C) Annihilation of a mixed bino-higgsino LSP through t-channel chargino and neutralino
exchange, and through s-channel Z exchange. This requires a sizable LSP higgsino
fraction fH & 0.25%. Heavier LSPs need a larger higgsino fraction, so that eventually
coannihilation with other neutralinos and charginos also becomes important. Besides,
if 2mχ̃0

1
∼ mA, s-channel A exchange also contributes in this region.

Finally note that throughout this work the squark and slepton mass matrices and A-
terms are assumed to be diagonal. The issue of flavour-changing neutral currents due to
non-diagonal terms arising in particular in the warped case [45–47] is left for a separate
work [48].

4.1 Results for universal soft terms

Here the model parameters to scan over are universal gaugino and sfermion mass parameters
M1/2 and m0, a universal trilinear coupling A0, and tanβ. In addition there are the two
discrete parameters sign(µ) and εH . We choose µ > 0 as favoured by BR(b→ sγ) and run
ten chains with 106 iterations each, for both εH = +1 and −1, allowing M1/2 to vary from
0 to 2 TeV, m0 from 0 to 5 TeV, A0 within ±10 TeV and tanβ from 2 to 60.

Figure 7 shows the marginalized 1D posterior probability distributions of the input
parameters comparing flat (in black) to natural (in red) prior. The case of εH = −1 is
shown in figure 8. As can be seen, in both cases the naturalness prior results in a pull
towards smaller masses and smaller tanβ. The general features, which are detailed below,
however remain the same.
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Figure 7. Marginalized 1D posterior probability distributions of the input parameters for universal
soft terms and εH = +1. Black lines are for flat prior, red lines for natural prior. Dimensionful
quantities are in GeV.

Figure 8. Same as figure 7 but for εH = −1; black (blue) lines are for flat (natural) prior.

M1/2 is bounded from below by the Higgs and SUSY mass limits, and from above by
the requirement of sufficient neutralino annihilation. The processes that bring the neu-
tralino relic density within the desired range are A) or B) from above: coannihilation with
sleptons (ẽR, µ̃R, or τ̃1) or annihilation through the Higgs funnel. On the other hand, we
do not find any region where the LSP higgsino fraction is large enough to render processes
C) efficient. Coannihilation with stops or sbottoms is also absent. For εH = +1 it becomes
difficult to achieve small enough |mA − 2mχ̃0

1
| and ml̃ −mχ̃0

1
when mχ̃0

1
& 750− 800 GeV.

For εH = −1 this is the case when mχ̃0
1

& 600 GeV.
The relic density constraint also prefers higher tanβ, for which the Higgs funnel is

more efficient. This is the reason for the preference of high tanβ in the distribution for
εH = +1 and flat prior (which is still softened by the natural prior). High values around
tanβ ∼ 50 are constrained by BR(b → sγ) becoming too low. For εH = −1, the tanβ
distribution is more flat because the BR(b → sγ) constraint becomes effective earlier as
tanβ grows. These correlations are illustrated in figure 9.

Regarding the m0 probability distribution, the peak at low m0 is where coannihilation
with sleptons takes place. Slepton coannihilation, and with it the low m0 peak, becomes
more relevant when using the natural prior because of its preference for smaller tanβ for
which the Higgs funnel is less efficient. Overall, however, the annihilation through the
pseudoscalar resonance is by far the dominant mechanism: for εH = +1 and flat (natural)
prior, 88% (83%) of the points exhibit predominantly annihilation into bb̄, while 10% (15%)
predominantly show coannihilation with sleptons. For εH = −1, the A resonance is more
difficult to hit, partly because tanβ is smaller, so that for flat (natural) prior 22% (26%)
of the points predominantly show slepton coannihilation.
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Figure 9. Contours of 68% and 95% probability in the BR(b→ sγ) versus tanβ plane, on the left
for εH = +1, on the right for εH = −1. The green shading maps the average likelihood per bin,
normalized to the maximum likelihood.

Figure 10. Contours of 68% and 95% probability showing correlations between m2
H1,2

, µ, Bµ and
the input parameters for universal soft terms, εH = +1 and flat prior.

As opposed to the CMSSM there is no “focus point” behaviour in this scenario: The
m0 distribution shows a clear preference for lower values . 2 TeV, and m0 is significantly
correlated with µ. In fact the CMSSM focus point hinges on having a single parameter
which governs the scalar soft masses for both Higgs and matter fields. This is clearly not
the case in DHMM models.

Finally, the A0 distribution confirms our discussion of the sign correlations in section 3.
An important issue in our considerations are the values of m2

H1,2
, µ and Bµ at the

GUT scale resulting from the DHMM condition. In figures 10 and 11 we therefore show
2D posterior probability distributions for these parameters.5 The tight correlation between
m2
H1,2

and µ is clearly visible. Moreover, as can be seen, for both εH = ±1 small |m2
H1,2
|

and |µ| prefers small values of M1/2, m0 and εHA0.
Regarding consequences for experiments, figures 12 and 13 show 1D posterior proba-

bility distributions for SUSY and Higgs masses. Also shown are the distributions for the
5To limit the proliferation of figures we only show 2D distributions for flat prior; those for natural prior

look very similar.
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Figure 11. Same as figure 10 but for εH = −1.

LSP higgsino fraction fH and the cross section for spin-independent direct detection σSI
χp.

The pull of the natural prior towards lighter masses and in particular towards smaller µ is
again evident. We also note that most of the parameter space lies within reach of the LHC
at 14 TeV centre-of-mass energy. In fact, for εH = +1 (−1) and flat prior, 82% (97%) of the
points have gluino and squark masses below 3 TeV. Moreover, 55% (58%) of these points
have sleptons that are lighter than the χ̃0

2, so that a same-flavour opposite-sign dilepton
signal from χ̃0

2 → ˜̀±`∓ → `±`∓χ̃0
1 may be visible in SUSY cascade decays (if decays into

sleptons are absent or kinematically suppressed, then χ̃0
2 → hχ̃0

1 is the most important
decay mode of χ̃0

2). For naturalness prior, 88% (99%) of the εH = −1 points have gluino
and squark masses below 3 TeV, with 64% of these featuring mẽ,τ̃ < mχ̃0

2
.

If the χ̃0
2 decay into sleptons is open, χ̃0

2 → ẽ±e∓, µ̃±µ∓ has up to about 40% branching
ratio. It is however important to keep in mind that owing to the universality assumption,
the typical mass ordering is mτ̃1 < mẽR < mẽL . Therefore χ̃0

2 → τ̃±1 τ
∓ decays are often

dominant.
Concerning direct dark matter detection, we note that because the LSP is always

almost a pure bino, the neutralino scattering cross section on proton is typically of the
order of 10−11 − 10−10 pb and hence beyond the reach of current experiments.

Finally, we observe that even with the natural prior the fine-tuning tends to be very
large, of the level of per-mil, and points with c < 100, corresponding to less than 1%
fine-tuning are difficult to obtain. Correlations of the finetuning measure c are illustrated
in figure 14 for natural prior. The lowest fine-tuning occurs for small M1/2, medium
tanβ ∼ 20–30, A0 ∼ 0 and m0 ∼ 1 TeV, with µ being around 1.5–2 TeV.

4.2 Results for vanishing 1st/2nd generation soft terms

Let us now turn to the pattern of soft terms obtained from models such as the gauge-Higgs
unification (GHU) model of section 2.1. Here the first- and second-generation matter fields
were localized on a brane and SUSY breaking was mediated by the radion, leading to
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Figure 12. Posterior probability distributions of the most relevant masses for universal soft terms
and εH = +1. The bottom-right plots show the LSP higgsino fraction, fH := |N13|2 + |N14|2, and
the spin-independent scattering cross section on protons. As above, black lines are for flat and red
lines for natural prior.

vanishing 1st/2nd generation and non-universal 3rd generation soft terms. We will call
this “GHU-like boundary conditions” in the following. The free parameters in this case are
M1/2, tanβ, and the third-generation soft terms mQ3 , mU3 , mD3 , At, Ab, mL3 , mE3 , Aτ .
We allow M1/2 to vary from 0 to 2 TeV, tanβ from 2 to 60, m2

Q3,U3,D3
within ±25 TeV2,

m2
L3,E3

from 0 to 4 TeV2, and At,b,τ within ±10 TeV.

The marginalized 1D posterior probability distributions of the input parameters are
displayed in figure 15 for εH = +1 and in figure 16 for εH = −1. Analogously, figures 17
and 18 show the probability distributions of masses, µ parameter, LSP higgsino fraction,
and the spin-independent LSP scattering cross section on protons.

Two important differences to the case of universal soft terms are that M1/2 can now go
to much higher values, and that tanβ peaks around 10. The reason is on the one hand that
due to the no-scale boundary conditions for the 1st/2nd generation, coannihilation with
selectrons and smuons becomes more likely; this is mainly relevant for mχ̃0

1
. 500 GeV.

Accordingly, there are distinct peaks at mχ̃0
1
≈ 400 GeV in figures 17 and 18, corresponding

to the peaks at M1/2 ≈ 900 GeV in figures 15 and 16. On the other hand, due to the
non-universal 3rd generation we can obtain smaller values of µ, and hence processes C)
become important. This is mainly relevant for heavy χ̃0

1 and leads to the peak at large
M1/2 for εH = +1. For εH = −1, µ tends to be larger (i.e. fH tends to be smaller) and
consequently the high M1/2 region is less favoured. Besides, for both εH = ±1, we find
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Figure 13. Same as figure 12 but for εH = −1; black (blue) lines are for flat (natural) prior.

Figure 14. 2D posterior probability distributions of the fine-tuning measure c for natural prior.
The contours enclose regions of 68% and 95% probability. The top row (red contours) is for εH = +1,
the bottom row (blue contours) for εH = −1.

some coannihilation with b̃1 and/or t̃1, though this is diminished by the naturalness prior.
(For εH = −1, this leads to the peak at large negative mD3 , which gives light b̃1 ∼ b̃R,
c.f. figure 18. Coannihilation with t̃1 is less frequent, in particular for εH = +1, as the
Higgs mass bound pushes the stop masses up.)

Concerning collider phenomenology, we first observe that, because of the vanishing
1st/2nd generation soft terms, the χ̃0

2 → ˜̀±`∓ → `±`∓χ̃0
1 decay, with ` = e or µ, is almost
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Figure 15. Marginalized 1D posterior probability distributions of the input parameters for GHU-
like boundary conditions and εH = +1. Black lines are for flat prior, red lines for natural prior.
Dimensionful quantities are in GeV.

Figure 16. Same as figure 15 but for εH = −1; black (blue) lines are for flat (natural) prior.

always present. Staus are heavier and hence much less important for the χ̃0
2 decays. Second,

for εH = −1, squark and gluino masses peak around 2 TeV, which means that the LHC
at 14 TeV centre-of-mass energy has again a very good discovery potential over most of
the parameter space. More precisely, 88% of the εH = −1 points have mq̃,g̃ ≤ 3 TeV. For
εH = +1, on the other hand, we find that a considerable fraction of the parameter space
lies beyond the reach of the LHC. In this region the χ̃0

1 is heavy and is very likely to have
a large higgsino fraction (since we require Ωh2 ∼ 0.1). In turn this leads to a large cross
section for direct dark matter detection of up to around 10−7 pb, see the bottom right plot
in figure 17: Interestingly, this is just at the edge of current CDMS-II exclusion limit [49] for
heavy masses.6 The 2D probability distributions in the plane σSI

χp versus mχ̃0
1

are shown in
figure 19 for the natural prior. It is very gratifying that these models can be experimentally
tested with complimentary methods, by both LHC and direct dark matter searches.

For completeness, figures 20 to 23 show various parameter correlations in 2D. It is
interesting to see that m2

H1,2
(MGUT) = 0 is easily obtained for εH = +1, but does not

occur for εH = −1. Moreover, the sign correlation between εH , Bµ and At discussed in
section 3 is evident.

6While we have not used constraints from direct dark matter searches in the MCMC, a posteriori it
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Figure 17. Posterior probability distributions of the most relevant masses, µ(MEW), LSP higgsino
fraction, and the spin-independent LSP scattering cross section on protons for GHU-like boundary
conditions with εH = +1. As above, black lines are for flat and red lines for natural prior.

5 Conclusions

Among the many possible embeddings of the MSSM into a grand-unified theory, there
are some interesting classes of models which predict a degenerate GUT-scale Higgs mass
matrix. We have investigated the origin of this prediction in some example high-scale
models, as well as its consequences for low-scale mass spectra and phenomenology.

With the additional assumption of universal GUT-scale gaugino masses (which is valid
in most simple GUT scenarios) the low-energy spectrum still depends sensitively on the
sfermion soft terms. Different high-scale models will give rise to various patterns of sfermion
masses and trilinear terms. We have chosen to investigate two representative cases in de-
tail: first, universal sfermion soft terms, and second, vanishing soft terms for the first two
generations but non-vanishing and non-universal ones for the third. Both these cases are
well motivated from the GUT model building point of view.

turns out that only about 1% of the points with higgsino LSP violate the current limits.
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Figure 18. Same as figure 17 but for εH = −1; black (blue) lines are for flat (natural) prior.

Figure 19. Probability distributions in the plane σSI
χp versus mχ̃0

1
for naturalness prior, on the left

for εH = +1, on the right for εH = −1. The inner (outer) contours enclose regions of 68% (95%)
probability, the green shading maps the average likelihood, and the black lines show the limit from
CDMS-II, which is currently providing the strongest bound in this mass range.
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Figure 20. Contours of 68% and 95% probability showing correlations between the most relevant
input parameters for GHU-like boundary conditions, εH = +1 and naturalness prior.

Figure 21. Same as figure 20 but for εH = −1.

Figure 22. Contours of 68% and 95% probability showing correlations between m2
H1,2

, µ, Bµ and
the most relevant input parameters for GHU-like boundary conditions, εH = +1 and naturalness
prior.

Figure 23. Same as figure 22 but for εH = −1.
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We explained how the remaining independent high-scale parameters are constrained
by the requirement of realistic electroweak symmetry breaking and a sufficiently large
Higgs mass. We also briefly compared with the related CMSSM and NUHM scenarios.
Finally we presented a detailed parameter scan using Markov Chain Monte Carlo methods,
highlighting the preferred ranges of parameters as well as correlations between them.

Our analysis shows that models with degenerate Higgs mass matrix can be viable UV-
completions of the MSSM for large ranges of gaugino and sfermion soft terms. They are,
however, already strongly constrained by direct Higgs and SUSY searches, flavour physics,
and cosmology (as is the MSSM as a whole). In particular, the need to evade the LEP
Higgs mass bound leads to preferred sparticle masses in the TeV range. This implies large
finetuning in obtaining the correct electroweak scale. Most of the parameter points we
found are fine-tuned on the sub-percent level, which of course reflects nothing but the
well-known little hierarchy problem of the MSSM. Another stringent constraint arises from
the dark matter relic density: In the models we considered, the neutralino relic density is
generically larger than the observed value, so rather special parameter values are necessary
in order to enhance the neutralino annihilation cross section.

Nevertheless, we find Ωh2 ' 0.1 over a large part of the parameter space. This is
mainly due to Higgs funnel annihilation, a large χ̃0

1 higgsino fraction, or coannihilation
with sleptons. In the case of universal sfermion soft terms, the Higgs funnel is clearly
the most important process. Here it is worth noting that the shapes of the 1D posterior
probability distributions are more or less generated by just demanding correct EWSB,
with the other constraints adding little to the shapes. In other words, the EWSB condition
already selects the parameters such that most of the low energy observables are of roughly
the correct magnitude, with exception of the relic density. It is then mainly the relic density
constraint that helps shape the likelihood maps, and this reshaping can be understood in
terms of the different (co-)annihilation channel contributions. The global features of the
probability distributions are also quite robust against the fine-tuning prior.

Most of the parameter space lies within the reach of LHC at 14 TeV. In the region which
is most difficult for the LHC to access, the LSP is higgsino-like and spin-independent direct
dark matter detection experiments should soon see a signal. Should the MSSM with degen-
erate Higgs mass matrix be realized in nature, it will therefore almost certainly be observed
within the next few years. This naturally raises the question of model discrimination: Can
we look for a piece of experimental evidence pointing more or less uniquely to DHMM
models? Unfortunately it seems to us that there is no such “smoking gun” signature for
this kind of scenario. LHC may be able to exclude our models, but even if, conversely, an
MSSM spectrum compatible with DHMM was found, it would need a future linear collider
to accurately measure the sparticle masses and make a bottom-up reconstruction of the
GUT-scale structure feasible.
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[11] A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry-breaking terms from
supergravity and superstring models, hep-ph/9707209 [SPIRES].
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