55 research outputs found

    Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    Get PDF
    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf

    Matrix-Bound PAI-1 Supports Cell Blebbing via RhoA/ROCK1 Signaling

    Get PDF
    The microenvironment of a tumor can influence both the morphology and the behavior of cancer cells which, in turn, can rapidly adapt to environmental changes. Increasing evidence points to the involvement of amoeboid cell migration and thus of cell blebbing in the metastatic process; however, the cues that promote amoeboid cell behavior in physiological and pathological conditions have not yet been clearly identified. Plasminogen Activator Inhibitor type-1 (PAI-1) is found in high amount in the microenvironment of aggressive tumors and is considered as an independent marker of bad prognosis. Here we show by immunoblotting, activity assay and immunofluorescence that, in SW620 human colorectal cancer cells, matrix-associated PAI-1 plays a role in the cell behavior needed for amoeboid migration by maintaining cell blebbing, localizing PDK1 and ROCK1 at the cell membrane and maintaining the RhoA/ROCK1/MLC-P pathway activation. The results obtained by modeling PAI-1 deposition around tumors indicate that matrix-bound PAI-1 is heterogeneously distributed at the tumor periphery and that, at certain spots, the elevated concentrations of matrix-bound PAI-1 needed for cancer cells to undergo the mesenchymal-amoeboid transition can be observed. Matrix-bound PAI-1, as a matricellular protein, could thus represent one of the physiopathological requirements to support metastatic formation

    Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer

    Get PDF
    BACKGROUND: The urokinase plasminogen activator (uPA) and its receptor (uPAR/CD87) are major regulators of extracellular matrix degradation and are involved in cell migration and invasion under physiological and pathological conditions. The uPA/uPAR system has been of great interest in cancer research because it is involved in the development of most invasive cancer phenotypes and is a strong predictor of poor patient survival. However, little is known about the role of uPA/uPAR in small cell lung cancer (SCLC), the most aggressive type of lung cancer. We therefore determined whether uPA and uPAR are involved in generation of drug resistant SCLC cell phenotype. METHODS AND FINDINGS: We screened six human SCLC cell lines for surface markers for putative stem and cancer cells. We used fluorescence-activated cell sorting (FACS), fluorescence microscopy and clonogenic assays to demonstrate uPAR expression in a subpopulation of cells derived from primary and metastatic SCLC cell lines. Cytotoxic assays were used to determine the sensitivity of uPAR-positive and uPAR-negative cells to chemotherapeutic agents. The uPAR-positive cells in all SCLC lines demonstrated multi-drug resistance, high clonogenic activity and co-expression of CD44 and MDR1, putative cancer stem cell markers. CONCLUSIONS: These data suggest that uPAR-positive cells may define a functionally important population of cancer cells in SCLC, which are resistant to traditional chemotherapies, and could serve as critical targets for more effective therapeutic interventions in SCLC

    Low Density Lipoprotein Receptor-Related Protein 1 Dependent Endosomal Trapping and Recycling of Apolipoprotein E

    Get PDF
    BACKGROUND: Lipoprotein receptors from the low density lipoprotein (LDL) receptor family are multifunctional membrane proteins which can efficiently mediate endocytosis and thereby facilitate lipoprotein clearance from the plasma. The biggest member of this family, the LDL receptor-related protein 1 (LRP1), facilitates the hepatic uptake of triglyceride-rich lipoproteins (TRL) via interaction with apolipoprotein E (apoE). In contrast to the classical LDL degradation pathway, TRL disintegrate in peripheral endosomes, and core lipids and apoB are targeted along the endocytic pathway for lysosomal degradation. Notably, TRL-derived apoE remains within recycling endosomes and is then mobilized by high density lipoproteins (HDL) for re-secretion. The aim of this study is to investigate the involvement of LRP1 in the regulation of apoE recycling. PRINCIPAL FINDINGS: Immunofluorescence studies indicate the LRP1-dependent trapping of apoE in EEA1-positive endosomes in human hepatoma cells. This processing is distinct from other LRP1 ligands such as RAP which is efficiently targeted to lysosomal compartments. Upon stimulation of HDL-induced recycling, apoE is released from LRP1-positive endosomes but is targeted to another, distinct population of early endosomes that contain HDL, but not LRP1. For subsequent analysis of the recycling capacity, we expressed the full-length human LRP1 and used an RNA interference approach to manipulate the expression levels of LRP1. In support of LRP1 determining the intracellular fate of apoE, overexpression of LRP1 significantly stimulated HDL-induced apoE recycling. Vice versa LRP1 knockdown in HEK293 cells and primary hepatocytes strongly reduced the efficiency of HDL to stimulate apoE secretion. CONCLUSION: We conclude that LRP1 enables apoE to accumulate in an early endosomal recycling compartment that serves as a pool for the intracellular formation and subsequent re-secretion of apoE-enriched HDL particles

    Clathrin and LRP-1-Independent Constitutive Endocytosis and Recycling of uPAR

    Get PDF
    Background: The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism couple

    Cleavage of the urokinase receptor (uPAR) on oral cancer cells : regulation by transforming growth factor - beta 1 (TGF-beta 1) and potential effects on migration and invasion

    Get PDF
    Background: Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Methods: Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - beta 1 (TGF-beta 1). The role of uPAR cleavage in cell proliferation and migration was analysed using real- time cell analysis and invasion was assessed using the myoma invasion model. Results: We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-beta 1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. Conclusions: These results show that soluble factors in the tumour microenvironment, such as TGF-beta 1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.Peer reviewe

    PAI-1 and functional blockade of SNAI1 in breast cancer cell migration

    Get PDF
    12 pages, 5 figures.-- PMID: 19055748 [PubMed].-- et al.[Introduction]: Snail, a family of transcriptional repressors implicated in cell movement, has been correlated with tumour invasion. The Plasminogen Activation (PA) system, including urokinase plasminogen activator (uPA), its receptor and its inhibitor, plasminogen activator inhibitor type 1(PAI-1), also plays a key role in cancer invasion and metastasis, either through proteolytic degradation or by non-proteolytic modulation of cell adhesion and migration. Thus, Snail and the PA system are both over-expressed in cancer and influence this process. In this study we aimed to determine if the activity of SNAI1 (a member of the Snail family) is correlated with expression of the PA system components and how this correlation can influence tumoural cell migration.[Methods]: We compared the invasive breast cancer cell-line MDA-MB-231 expressing SNAI1 (MDA-mock) with its derived clone expressing a dominant-negative form of SNAI1 (SNAI1-DN). Expression of PA system mRNAs was analysed by cDNA microarrays and real-time quantitative RT-PCR. Wound healing assays were used to determine cell migration. PAI-1 distribution was assessed by immunostaining.[Results]: We demonstrated by both cDNA microarrays and realtime quantitative RT-PCR that the functional blockade of SNAI1 induces a significant decrease of PAI-1 and uPA transcripts. After performing an in vitro wound-healing assay, we observed that SNAI1-DN cells migrate more slowly than MDA-mock cells and in a more collective manner. The blockade of SNAI1 activity resulted in the redistribution of PAI-1 in SNAI1-DN cells decorating large lamellipodia, which are commonly found structures in these cells.[Conclusions]: In the absence of functional SNAI1, the expression of PAI-1 transcripts is decreased, although the protein is redistributed at the leading edge of migrating cells in a manner comparable with that seen in normal epithelial cells.This work was supported by the CNRS ACI Program "Complexité du vivant" (grant # 050009DR11) and by the Evry Genopole grant "Aide à l'acquisition d'équipement semi-lourd" 2007 and 2008.Peer reviewe

    Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function

    Get PDF
    BACKGROUND: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. CONCLUSIONS: PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired
    • …
    corecore