10,538 research outputs found

    The crucial importance of the t2gt_{2g}--ege_g hybridization in transition metal oxides

    Full text link
    We studied the influence of the trigonal distortion of the regular octahedron along the (111) direction, found in the CoO2\rm CoO_2 layers. Under such a distortion the t2gt_{2g} orbitals split into one a1ga_{1g} and two degenerated ege_g^\prime orbitals. We focused on the relative order of these orbitals. Using quantum chemical calculations of embedded clusters at different levels of theory, we analyzed the influence of the different effects not taken into account in the crystalline field theory; that is metal-ligand hybridization, long-range crystalline field, screening effects and orbital relaxation. We found that none of them are responsible for the relative order of the t2gt_{2g} orbitals. In fact, the trigonal distortion allows a mixing of the t2gt_{2g} and ege_g orbitals of the metallic atom. This hybridization is at the origin of the a1ga_{1g}--ege_g^\prime relative order and of the incorrect prediction of the crystalline field theory

    The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans

    Get PDF
    Cafestol and kahweol–diterpenes present in unfiltered coffee— strongly raise serum VLDL and LDL cholesterol and slightly reduce HDL cholesterol in humans. The mechanism of action is unknown. We determined whether the coffee diterpenes may affect lipoprotein metabolism via effects on lipid transfer proteins and lecithin:cholesterol acyltransferase in a randomized, double-blind cross-over study with 10 healthy male volunteers. Either cafestol (61–64 mg/day) or a mixture of cafestol (60 mg/day) and kahweol (48–54 mg/day) was given for 28 days. Serum activity levels of cholesterylester transfer protein, phospholipid transfer protein and lecithin:cholesterol acyltransferase were measured using exogenous substrate assays. Relative to baseline values, cafestol raised the mean (±S.D.) activity of cholesterylester transfer protein by 18±12% and of phospholipid transfer protein by 21±14% (both P<0.001). Relative to cafestol alone, kahweol had no significant additional effects. Lecithin:cholesterol acyltransferase activity was reduced by 11±12% by cafestol plus kahweol (P=0.02). It is concluded that the effects of coffee diterpenes on plasma lipoproteins may be connected with changes in serum activity levels of lipid transfer proteins

    EIT ground-state cooling of long ion strings

    Get PDF
    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition

    Klein tunneling and Dirac potentials in trapped ions

    Get PDF
    We propose the quantum simulation of the Dirac equation with potentials, allowing the study of relativistic scaterring and the Klein tunneling. This quantum relativistic effect permits a positive-energy Dirac particle to propagate through a repulsive potential via the population transfer to negative-energy components. We show how to engineer scalar, pseudoscalar, and other potentials in the 1+1 Dirac equation by manipulating two trapped ions. The Dirac spinor is represented by the internal states of one ion, while its position and momentum are described by those of a collective motional mode. The second ion is used to build the desired potentials with high spatial resolution.Comment: 4 pages, 3 figures, minor change

    Soft breaking of LμLτL_\mu-L_\tau symmetry: Light neutrino spectrum and Leptogenesis

    Full text link
    Continuous U(1)LμLτU(1)_{L_\mu-L_\tau} symmetry can generate quasi degenerate mass spectrum for both left handed light and right handed heavy Majorana neutrinos assuming that the symmetry preserving non zero parameters are nearly same. There is an accidental μτ\mu\tau exchange symmetry in the light and heavy neutrino Majorana mass terms. This implies θ13=0\theta_{13}=0 and θ23=π4\theta_{23}=\frac{\pi}{4}. In addition it generates another zero mixing angle and one zero mass difference. We restrict ourselves to type-I See-Saw mechanism for generation of light neutrino mass. We have found that under U(1)LμLτU(1)_{L_\mu-L_\tau} symmetry cosmological lepton asymmetry vanishes. We break U(1)LμLτU(1)_{L_\mu-L_\tau} such a way that the μτ\mu\tau exchange symmetry preserves in the neutrino sector. We have seen that light neutrino phenomenology can be explained under soft breaking of this symmetry. We have observed that softness of this symmetry breaking depends on the degeneracy of the light neutrino mass spectrum. Quasi-degeneracy of right handed neutrino mass spectrum opens an option for resonant leptogenesis. The degeneracy of the right handed neutrino mass spectrum is restricted through light neutrino data. We observed that for generation of right sized baryon asymmetry common neutrino mass scale m0m_0 have to be of the order of Δmatm2\sqrt{\Delta m^2_{\rm atm}} and corresponding right handed neutrino mass scale have to be nearly 101310^{13} GeV. We also have discussed the effect of RG evolution on light neutrino spectrum and also on baryon asymmetry.Comment: 21 pages, no figure, Revised with the comments on RG effec

    Learning styles of physiotherapy students and teaching styles of their lecturers in undergraduate gross anatomy education

    Get PDF
    Background. Anatomy is essential to prepare physiotherapy students for future clinical practice. Student learning styles and lecturer teaching styles may influence learning outcomes.Objective. To determine if the learning style of this student population is consistent and compatible with lecturers’ teaching styles for better learning outcomes.Methods. A descriptive cross-sectional study was undertaken during 2015 and 2016. The Grasha-Riechmann learning style scale (GRLSS) and Grasha-Riechmann teaching style scale (GRTSS) were used to measure learning styles of two consecutive physiotherapy student cohorts and teaching styles of their anatomy lecturers, respectively.Results. Student samples were small (group 1: N=59 and group 2: N=54), but response rates high (n=39; 66.1% and n=43; 81.5%) in 2015 and 2016, respectively. Mean Likert scores for GRLSS indicated that the most popular choice for learning style was the dependent style (mean (standard deviation) 3.81 (0.75)) for group 1 and the independent style (3.68 (0.61)) for group 2. Female students preferred the dependent style (group 1: n=12; 30.8% and group 2: n=10; 23.3%) and male students the participant style (group 2: n=6; 14%) of learning. Lecturers scored highest in the expert category of teaching styles. Compatibility between learning and teaching styles was seen in both years based on comparisons made using teaching style clusters, where the identified GRLSS and GRTSS were grouped together and seen to fit into specific cluster categories.Conclusion. Consistency in learning style choice was observed. A degree of cohesion between student learning styles and their respective lecturers’ teaching styles augured well for good interaction between staff and students

    Computation of conical intersections by using perturbation techniques

    Get PDF
    Multiconfigurational second-order perturbation theory, both in its single-state multiconfigurational second-order perturbation theory (CASPT2) and multistate (MS-CASPT2) formulations, is used to search for minima on the crossing seams between different potential energy hypersurfaces of electronic states in several molecular systems. The performance of the procedures is tested and discussed, focusing on the problem of the nonorthogonality of the single-state perturbative solutions. In different cases the obtained structures and energy differences are compared with available complete active space self-consistent field and multireference configuration interaction solutions. Calculations on different state crossings in LiF, formaldehyde, the ethene dimer, and the penta-2,4-dieniminium cation illustrate the discussions. Practical procedures to validate the CASPT2 solutions in polyatomic systems are explored, while it is shown that the application of the MS-CASPT2 procedure is not straightforward and requires a careful analysis of the stability of the results with the quality of the reference wave functions, that is, the size of the active [email protected] [email protected] [email protected]

    Collisions of F+ with Ne

    Get PDF
    Measurements of inelastic collisions of F+ with Ne have been made. Transitions between 3P and 1D terms of F+ are seen, with the inelastically scattered ions sharply focused in the forward direction. Potential energy curves of (FNe)+ have been calculated. The 3Σ and 3Π curves correlating to F+(3P) are repulsive, while the 1Σ correlating to F+(1D) is attractive. Several curve crossings are identified, where transitions occur through spin-orbit coupling. Scattering angles and differential cross sections have been calculated, and they show the presence of a ‘‘glory’’ (or halo) effect, which accounts for the forward scattering of ions
    corecore