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Measurements of inelastic collisions of F* with Ne have been made. Transitions between *P and
D terms of F* are seen, with the inelastically scattered ions sharply focused in the forward direc-
tion. Potential energy curves of (FNe)* have been calculated. The *Z and °II curves correlating to
F+(®P) are repulsive, while the '3 correlating to F*('D) is attractive. Several curve crossings are
identified, where transitions occur through spin-orbit coupling. Scattering angles and differential
cross sections have been calculated, and they show the presence of a “glory” (or halo) effect, which

accounts for the forward scattering of ions.

I. INTRODUCTION

The formation and deexcitation of neutral rare-
gas—halide molecules have been extensively investigat-
ed.!~® Similarly, experimental and theoretical studies
have been carried out on rare-gas oxides, because of the
potential application of these systems in lasers.”® On the
other hand, there has been only a very limited number of
studies on the rare-gas—halide diatomic ions. These rare-
gas—halogen positive-ion systems are isoelectronic with
the rare-gas oxides, and as such, they might also be suit-
able candidates for laser systems.

In addition, rare gases have been used as moderators in
hot-atom studies of halogens, and generally the assump-
tion has been made in these studies that the rare gases are
inert. Recently, however, it has been demonstrated that
this assumption is not applicable to halogen hot-atom sys-
tems: collisional studies between Br* and Kr show that
Kr is not inert, but participates in an active chemical way
in the hot-atom process.’

In the 1960s, with the discovery of stable xenon and
krypton fluorides, it was shown by mass spectroscopic
techniques that XeFt and KrF* are stable ions.!® The
noble-gas—halide ions, KrCl*, KrF*, ArCl*, and Arl*
have been reported as stable ions.!"!> The raw KrBr* has
been prepared and its dissociation energy inferred from a
threshold measurement of collision dissociation reac-
tions.!> ArF™ has been reported to have a dissociation en-
ergy of >1.655 eV.* On the other hand, attempts to
make NeF+ and HeF* have been unsuccessful.'*

In order to get better insight into the nature of the dia-
tomic rare-gas—halide ions, we are investigating the col-
lisions between halogen positive ions and rare-gas atoms.
At this time, we report our results on the Ne-F* system.
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An energy-level diagram of the Ne-F* system at infin-
ite interatomic separation is shown in Fig. 1. Since the
maximum Kkinetic energy involved in our excitation exper-
iments was only 10 eV, no states other than the ones
shown are energetically accessible. Our experiments deal
mainly with excitation and deexcitation,

F*(?P)+Ne(1S)=F*+('D)+Ne(lS) , (1)

and with charge transfer

6.—
—_T_— Fr*('s)+Ne('s)
1.43
2 +(2
a4l % F(“P)+Ne*(<P)
— 1.55
>
2
w — Y F*(UD)+Ne('s)
2._
' 2.59
[o) I — F*(3P) +Ne('s)

FIG. 1. Energy levels for F* +Ne and F 4 Ne* at infinite
separation. Energy gaps in eV are indicated, with spin-orbit
splittings greatly exaggerated.
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F*(3P or D)+ Ne(1S)=F(*P)+Ne™*(*P) , ()
both of which are indicated in Fig. 1.

II. EXPERIMENTAL RESULTS

A. Inelastic scattering

Collisions of F*+ with Ne were measured using a tan-
dem mass spectrometer which has been described previ-
ously.15 It consists of an ion source, an electrostatic
analyzer, and a quadrupole mass spectrometer as an input
section. The ions were prepared by electron bombardment
of CH3;F. The beam composition so produced had 30%
F*('D,) and 70% F*+(3P,  ,), as determined by attenua-
tion measurements of the F* in neon.!® The beam width
was 0.1 eV in energy and 1.5° in angle [both full width at
half maximum (FWHM)].

The beam of F*' ions from this section was passed
through a shallow reaction chamber containing the target
gas Ne. The ions scattered to 0° to the beam direction
were then detected with a second quadrupole mass spec-
trometer followed by an electrostatic analyzer and an elec-
tron multiplier.

In this way, an energy spectrum of forward-scattered
F* was obtained (Fig. 2). The central peak is the unper-
turbed F*. The satellite peaks on each side of the pri-
mary are separated by 2.6 eV from the main peak. The
spacing between the 3P, ground state of F* and the first
excited state 'D, is 2.587 €V, so we interpret these peaks
as representing the process (1). The ‘“‘superelastic” peak
on the right corresponds to the transition F*(!D,)
—F*(3Py,; ;) and the more intense “subelastic” satellite
on the left is due to the transition F*(*Py | ,)—>F*('D,).
[Spacings of the spin-orbit energy levels (J =0,1,2) are
too small to be resolved.] At incident kinetic energies
below 2.5 eV (c.m.), the left-hand peak was not detected.

We shall explain later that this inelastic process results
from spin-orbit coupling. Because this magnetic effect is
very weak, it is rather surprising that a substantial current
of excited or deexcited ions is seen. To examine it further,
we measured the angular distribution of inelastically scat-
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FIG. 2. Current of subelastic and superelastic F* scattered in
the forward direction. The peaks occur at +2.6 eV, indicating
that >P<>'D excitation and deexcitation are occurring.

tered F*. This is shown in Fig. 3. This graph was ob-
tained in the following manner. The detector was set at
an angle relative to the incident beam (0°, %“, 1°...,5%,
and at each angle an energy scan gave result similar to
Fig. 2. The largest value of scattered current in the satel-
lite peaks was recorded and plotted in Fig. 3.

We see that the inelastic products are very sharply
focused in the forward direction. The inelastic current de-
creases by a factor of 10 within 3° from the forward direc-
tion, and the FWHM of the scattered current is similar to
that of the primary beam. Such sharp forward peaking of
an inelastically scattered product is a very unusual
phenomenon in an ion-atom collision.

B. Search for (NeF)*+

In view of the fact that the rare-gas diatomic halide
ions ArCl*, KrBr™, and Xel™ are easily prepared by elec-
tron bombardment of a mixture of the rare gas and halo-
gen molecule, we carried out similar experiments on Ne-
F, mixtures. Mass spectroscopic analysis of the mixture
clearly showed a mass-39 peak which may correspond to
NeF*. However, the intensity was not sufficiently high
to carry out corroborative experiments (such as collision-
induced dissociation) to support the peak assignment. In
this connection it is interesting to note that Berkowitz and
Chupka!# were not successful in producing NeF* by the
reaction of F,*(Ne,F)NeF ™.

o (8)

°]
1 | 1 1
2 3 4

6

FIG. 3. Angular distribution of inelastically scattered F*.
Open circles: 2.6 eV endothermic; solid circles: 2.6 eV exo-
thermic. The inelastic process is concentrated in the forward
direction. Solid line: calculation discussed in Sec. V. [In princi-
ple the units of o(6) are bohrs?/steradian, but only the relative
differential cross section is measured.]
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C. Charge transfer

To complete our discussion of experimental results, let
us recall the results of charge-transfer experiments report-
ed earlier.!® In these experiments, the F* ion beam was
produced by electron bombardment of CF,. Evidence was
presented!® that the beam contained a mixture of 'D and
3P states; however, when NO was added to the CF, then
the excited states were quenched, and the F* beam con-
tained only the ground 3P state. The total charge-transfer
cross section was measured by collecting product Ne™*
ions for the mixed beam ('D and *P), and for the ground
state (°P) beam, and in this way the two total cross sec-
tions for process (2) were inferred.

The ground-state total charge-transfer cross section for
F+(3P)+Ne—F + Ne* has a threshold near 4 eV (c.m.),
consistent with the energy-level diagram (Fig. 1), and it
has a maximum of about 4 A? for F* kinetic energies
around 20 eV (c.m.). For the excited state,
F*('D)+Ne—F+Ne™, the threshold is below 2 eV, and
the maximum cross section is about 12 A? at an energy of
about 8 eV (c.m.).

D. Summary

To summarize the experimental results, we have seen
unambiguous evidence of the inelastic processes (1). The
current of inelastically scattered particles is small, and
sharply peaked in the forward direction. The total
charge-transfer cross section has already been measured
and it is substantial (5—10 A?®). Finally, some (incon-
clusive) evidence was found for the existence of stable or
metastable (NeF)*.

III. ELECTRONIC ENERGIES OF (NeF)*

To interpret these results, it is necessary to have some
knowledge of the Ne-F* potential energy curves. In this
section we present the results of quantum-chemical calcu-
lations of these curves.

A. Computational details

Ab initio calculations were performed using the com-
plete active space self-consistent-field (CAS-SCF) method
in the “super-configuration-interaction (CI)” formula-
tion.!” In this multiconfiguration (MC) model the molec-
ular orbital (MO) space is divided into inactive, active,
and secondary subspaces. The orbitals in the inactive sub-
space are always doubly occupied. The remaining elec-
trons are distributed in all possible ways among the MO’s
in the active subspace, resulting in a complete list of elec-
tron configurations within the active subspace. Therefore
no list of configurations needs to be compiled in advance;
the only step requiring chemical intuition is the choice of
the active orbitals. The orbitals in the secondary subspace
are always empty. Unitary rotations between the three or-
bital subgroups are performed until the condition for op-
timized MCSCF orbitals—the generalized Brillouin
theorem—is satisfied.!® Unitary-group methods'® are
used to compute the configuration-expansion coefficients
in the multiconfiguration wave function.
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In the present calculations the 1o, 20, 30, and 40 orbi-
tals (i.e., essentially the 1s and 2s atomic orbitals of neon
and fluorine) formed the inactive subspace. The active
subspace consisted of the 50, 60, 1, 2, and 37 orbitals.
Thus the active subspace contains the 2p shells of fluorine
and neon plus one extra 7 orbital. This active subspace
has previously been used for the F, molecule, and was in
that case shown to give good results for the equilibrium
properties and dissociation energy (cf. Table III and Ref.
20). The number of spin-adapted configurations obtained
by distributing ten electrons among the active orbitals
varied between 300 and 500 depending on the symmetry
of the state. For technical reasons the calculations were
performed using C,, symmetry. An averaging procedure
was used to keep the two components of the 7 orbitals
equivalent, thus ensuring a correct linear symmetry of the
total wave function.

The atomic Gaussian basis sets for neon and fluorine
consisted of eleven s and seven p primitive functions,?!
contracted to six s and four p using the scheme
(6,1,1,1,1,1;4,1,1,1), and augmented with two sets of polar-
ization functions. The final d orbital exponents
£4(Ne)=2.70, 0.78, and §,;(F)=2.72, 0.68 were obtained
by scaling the exponents suggested by Ahlrichs.?> The op-
timal scaling factors were determined in a series of SCF
calculations on the NeF™ molecular ion at an interatomic
distance of 2.4 a.u.

The spectroscopic characteristics of the bound states
were obtained by solving numerically the rovibrational
Schrodinger equation in the calculated potential curves.
Four vibrational and twenty rotational states were used to
fit the spectroscopic constants to the calculated rotational
and vibrational energies. The rotational constants were
obtained by fitting to the term values for each band, while
the vibrational constants were obtained from a fit to the
band origins.

B. Results and discussion

The NeF™* system has the four low-lying dissociation
limits shown in Fig. 1. These correlate with 18 molecular
electronic states as indicated in Table I. In the present
work we have determined potential energy curves for the
lowest IT and 32~ states, and those of the higher states
that may cross or approach closely the two lowest ones,
ie, the =+, ', and 'A states dissociating into
Ne('S)+F*('D) and the lowest '=*, *3+, =~ 1, °[,
and A states dissociating into Net(2P)+F(*D). In all,
11 out of the 18 possible potential curves were studied.
The computed potential curves are given in Table II.

The asymptotic energies can be compared with the ex-
perimental energy levels of the atom and ion.”* The exci-
tation energy from F+(*P) to F*(!D) is calculated to be
2.84 eV, or 0.25 eV too high. Similarly, the distance to
the Ne™(2P)+F(?P) state is calculated to be 4.31 or 0.17
eV above the experimental value. These small differences
do not affect the calculated crossing points appreciably, as
is seen in Table III. The curves shown in Fig. 4 have been
shifted to the experimental asymptotic energies. (The tiny
variations in the asymptotic energies of the states with the
same dissociation limits in Table II are caused by differ-
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TABLE 1. Dissociation products and spectroscopic states for NeF*.

States Asymptote Asymptotic energy (eV)*
132, 1°1n Ne('S)+F*+(*P) 0.00 (0.00)
1'a, 1'm, 113+ Ne('S)+F* (D) 2.84 (2.59)
213+ 313+,
133+, 233+,
13-, 233, Ne*(*P)+F(*P) 431 (4.14)
23, 3°m,
2, 3.
2'A, 1%A
4!+ Ne(!S)+F*(1S) (5.57)

2Computed asymptotic relative energies; experimental values within parentheses (Ref. 22).

ences in the MC expansions in the different symmetries.)

Only two of the electronic states were found to be bind-
ing, the lowest IS+ and 'II states. The 'St state has a
dissociation energy of 1.644 eV and an equilibrium bond
distance of 1.465 A. Liebman and Allen® reported
Hartree-Fock calculations on this state; they found an
equilibrium bond distance of 1.65 A and a dissociation en-
ergy of about 1.3 eV, in reasonable agreement with the
present results. The strong binding in this state derives
from the fact that the dommant F* configuration : at
small distances is 2p} 2py (counting electrons) or 2p 2
(counting holes); the two empty 2p, orbitals are aimed at
the Ne atom, allowing strong binding to occur.

This '=% curve is crossed by the 3=~ and ’II curves
correlating with F+(3P), and spin-orbit coupling induces
electronic transitions that would lead to dissociation.
However, if these transitions are neglected, the rovibra-
tional levels of NeF* can be calculated, and spectroscopic
parameters can be determined as explained above. These
spectroscopic parameters are presented in Table IV. For
comparison, and to provide a test of the accuracy of the
calculated potential curves, the corresponding parameters
were calculated by the same method for the isoelectronic
F, molecule. These are also presented in Table IV, togeth-
er with the experimental values. The results obtained for
F, are remarkably (in fact, fortuitously) good, and a close
resemblance between these two isoelectronic molecules is
found, as could be expected. Hence a roughly similar ac-
curacy can be expected in the case of NeF ™, and therefore
the choice of active subspace and atomic basis set seems
adequate. This conclusion is corroborated by the relative-
ly small errors in the asymptotic limits of the NeF* po-

TABLE II1. Crossing points for the potential curves of NeF+.

Unshifted? Shifted®
R¢ AE¢ R° AE¢
Is+.311 1.533 1.252 1.564 1.053
Is+33- 1.701 1.639 1.726 1.458
1-33- 1.544 3.374 1.570 2.996

?From theoretical potential curves.

Obtained with curves shifted to fit the exponential asymptotes.
“Ne-F distance at crossing in angstroms.

9Energy at crossing relative to Ne('S)+F*(*P) in eV.

tential energy curves, 0.25 and 0.17 eV. The other elec-
tronic state that shows binding is the lowest 1, but the
dissociation energy of this state is only 0.18 eV.

The interaction between the F* ion and the induced di-
pole moment of the neon atom might be expected to cause
a weak minimum on the lowest *IT and 32~ curves. How-
ever, these curves are found to be purely repulsive. The
present basis sets are believed to account reasonably well
for the polarization effects. With a roughly comparable
(65,4p,3d) basis set, Maroulis and Bishop?’ obtained a di-
pole polarizability of 2.13 for neon, the experimental
value being 2.67. Nelin et al.?® have shown that the

-0.20
-0.25
Ne*(2p)
+F(2P)
__ -030
- r
O -
o - e('s)
< - +F*('D)
o —
F< -
w —0.35[
-0.40
_:_ 3m >~ Ne('s)
— +F*(3P)
—o4as ol oo o oo boedo bl
2 3 4 5 6 7
R (bohrs)

FIG. 4. Potential energy curves for the NeF* system:
> states; — — —, IT states; - - , A states. Altogether 18
molecular states correlate to the four lowest atomic terms of
Ne + F* and Ne* +F, of which nine are shown here. Others
appear to be repulsive. Curves labeled 4 —D are involved in in-
elastic transitions.
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TABLE 1V. Spectroscopic constants for F,(X'S}) and
NeF*(1'3+).2
Fz NeF*
Calc. Expt.’ Calc.
re (A) 1.419 1.412 1.465
D, (eV) 1.598 1.644
Dy (eV) 1.541 1.602 1.591
o, (cm™') 923.8 916.6 861.7
w.x, (cm™") 9.38 11.24 7.28
®eye (cm™!) —0.94 —0.11 —0.33
B, (cm™") 0.881 0.890 0.805
a, (cm™!) 11.7x1073 13.8x 1073 9.6x 1073
¥e em™1) —6.7x10~* 1.2x107* —2.0x10~*
d. (cm™!) 3.09%107° 3.3x107° 2.8%107¢
Band origins®
AG,;,; (cm™!) 901.5 894 845.7
AG;,; (cm™") 875.3 870 829.2
AGs,;, (cm™}) 841.7 846 808.2

Calculated from a numerical solution of the radial Schrédinger
equation, using v=0—4 and J =0-—20.

®Experimental values from Ref. 27.

°Experimental values from Ref. 28.

correlation effects are not very pronounced in this case
and the present active space covers most of the correlation
contribution. Therefore we conclude that the repulsive
forces dominate the attractive ones at intermediate inter-
nuclear distances.

C. Curve crossings and electronic transitions

Several curve crossings are found in this calculation,
and the computed crossing points for both the shifted and
unshifted energy curves are listed in Table III.

1. Predissociation

As already mentioned, both the ’IT and 3~ curves
cross the binding !=7 state near the minimum. Spin-orbit
coupling terms in the Hamiltonian produce matrix ele-
ments that connect these states, and induce electronic
transitions. Therefore the rovibrational levels associated
with the !=+ electronic state are not truly bound, but un-
dergo dissociation with a finite lifetime. This lifetime is
extremely sensitive to the exact relative positions of the
potential energy curves. If the crossing occurs in a classi-
cally forbidden region of the nuclear motion, then the
state can have a long lifetime with respect to dissociation,
but if it occurs in a classically allowed region, the state
will have a short lifetime.

For example, according to Fig. 4, the *£~ and 'S+
curves cross at about 1.7 A; the lowest five vibrational
states of the '=* state have their outer turning points at
smaller distances, so the crossing point is in a classically
forbidden region, and the lowest states would have long
lifetimes with respect to this transition (up to 10'° or more
vibrational periods). On the other hand, the higher vibra-
tional states (v>5) have outer turning points at larger
distances than the crossing point, and these states will
have short lifetimes for this transition (~20 to 100 vibra-
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tional periods). .

The *IT state crosses the 'S state near 1.5 or 1.6 A;
this is in the classically allowed region of the vibrational
states v > 1, but slightly in the classically forbidden region
of the v =0 state. Therefore only this v =0 vibrational
state could have an extended lifetime, and it might be as
small as a thousand or so vibrational periods. However, a
small shift in the relative positions of these curves would
dramatically alter this conclusion. An upward shift of the
’I1 relative to the '3+ would increase the lifetime by a
large factor, a small downward shift would decrease the
lifetime, while a larger downward shift would again in-
crease the lifetime. Therefore no unambiguous conclusion
can be drawn about the stability of NeF* from this calcu-
lation. (We recall that the experimental results are also
inconclusive.)

2. Inelastic collisions

The same curve crossings, together with the *=~-!TI
crossing mediate the inelastic 3P<>'D transitions which
are seen experimentally, and these will be discussed in
more detail in later sections.

3. Charge transfer

Charge transfer at low energies is known to be very im-
probable unless there is a degeneracy or near degeneracy
that mediates the transition. However, a relevant degen-
eracy has not yet been identified. The obvious candidates
(1°M=2°1D), (1°=-—2337), (1'm-2'), (1'a—2'A)
have been examined and in every case the calculation
gives a higher state which is very repulsive and does not
approach the lower state. Presently the experimentally
observed charge transfer is not explained.

In Secs. IV and V we examine the inelastic >P<>'D exci-
tations in more detail. First we obtain an estimate of the
spin-orbit matrix elements, and then we give a semiquan-
tal description of the collision process.

IV. SPIN-ORBIT COUPLING MATRIX ELEMENTS

As discussed above, excitations and deexcitations be-
tween F*(°P) and F*+(!D) occur near the crossings seen in
Fig. 4. For convenience we label the relevant molecular
terms A4,B,C,D, according to Table V. Transitions occur
through spin-orbit interactions connecting 4 to C, B to

TABLE V. Labels for terms and states.

Term State
label Symmetry |[SSLA) Q label
A 1°1 [1—-111) 0 A,

[111—1) 0 A
B 133- [1010) 0 By
[1110) 1 B,
[1—-110) -1 B_
C 1'z+ |0020) 0 C
D 1 |0021) 1 D,
1002 —1) —1 D_
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C, and B to D. Accurate calculation of these matrix ele-
ments would be a large computational task, for which we
do not possess the programs. However, they can easily be
estimated using a kind of linear combination of atomic or-
bitals (LCAO) approximation. We assume that near the
crossings (around 3ag) the spin-orbit matrix elements are
close to the values obtained for the separated atoms, and
we use measured spin-orbit splittings to calculate them.
This can be partly justified from the fact that spin-orbit
matrix elements are primarily determined by those parts
of the electronic wave functions that are close to the nu-
clei, and such parts of the wave functions are least distort-
ed by the molecular fields.

The spin-orbit operator for several electrons interacting
with several nuclei is

1 aVa(r,-)

1
H=— 3 127l
r; ar"

m 2c2 I,'S,' 5 (3a)

i,a
where V,(r;) is a central field associated with nucleus a.
Following standard notation, we write

72 (3b)

The F* ion has four electrons outside a closed shell, but it
is simpler to say that it has two holes in the p shell. Then
the spin-orbit operator has the same form, but now i la-
bels a hole rather than an electron, and the sign of the ef-
fective central potential is changed.

When this operator acts upon states characterized by
quantum numbers | S L A) (where = and A are com-
ponents of electronic spin and orbital angular momentum
along the internuclear axis) it connects them subject to the
selection rules

AL =+1,0,

AS=+1,0,

AA=+1,0, (4)
AZ=+1,0,

AQ=0

(here Q=2+ A) corresponds to the component of L +5S).
In molecules, L is not generally a good quantum number,
but, consistent with our method of obtaining the required
matrix elements by examination of the separated atoms,
we treat it as if it were a good quantum number, and we
take the value of L for any molecular state to be the value
that emerges at large R. With this approximation, the es-
timation of the matrix elements becomes a standard exer-
cise in angular-momentum unscrambling, and we use for-
mulas given in Chapter 3 of Condon and Shortley (CS).?’
The relevant terms and states are listed in Table V.

The C term (1'37%) consists of only one state, for
which the quantum numbers |S=L A) are |0020).
L =2 is obtained from the fact that it goes to a D term at
large R. Since ) for this state is equal to zero, this C
state is coupled only to those A states and B states for
which Q is also equal to zero. The relevant B state is
denoted B, and its quantum numbers |SZLA) are
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[1010). We therefore need the matrix element

(By |H' | c>=<130 S &l c>

=3 (By | &(r;)| CT)(1010];5;|0020) ,

(5)

where | Bg) and | C”) are the radial parts of the wave
function. The angular parts are evaluated in Condon and
Shortley (p. 63, the second and sixth of the set of equa-
tions numbered 9311)

(1010]|1s;]0020)=(10]1;|20)-(10]s; |00)

=2(1:;:2)(1:5;:0) . (6)
Since there are two equivalent holes, we obtain
(Bo | H' | C)Y=(2£pc)2(1:1:2)(1:5:0) , (7
where
Cee=(B"|&r)|CT) . (8)

For the A term we say that L =1, since it correlates to
3P. There are six A states, but only two of these (denoted
A, and A4,) have =0, so only these are coupled to C.
Their quantum numbers |S=L A) are |1 —111) and
[111—1). The matrix elements (A4;|H'|C) and
(A, |H'|C) are equal in magnitude, and either can be
evaluated using the first and fifth of Egs. 9°11 (CS p. 63),

—26,c(111;]20)-(1 —1]s; |00)
=26 4c(1:1:2)(1:5:0) . ©)

Like term A, term D is assigned the quantum number
L =2, but A= =1, leading to Q= *1, so it interacts with
the corresponding components in the B term. We have

(B, |H'|D.)
=2<B; |&(r;) | D7 ){1110]|];s;]0021)

=2(B" |&(r;)| D} ){10|I;|21)-(11]|s;|00)
=2&pp(1:1:2)(1:5:00V3 . (10)

Next we need to evaluate the reduced matrix elements
(1:7:2) and (1:5:0). The first of these involves a matrix
element of a one-electron orbital angular momentum
operator between states in which the total orbital angular
momentum is respectively # and 2#. This latter state, of
course, arises from the fact that F+ possesses two holes in
p orbitals, each of which has an angular momentum of
one #i; therefore (1:/:2) is a special case of a matrix ele-
ment

(1:1:22)=(1,,15,L —1:1,:1,,15,L) (11)

with /;=I,=1, L =2. This matrix element is evaluated
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in Eqgs. 10°2b and 102b’ of CS (p. 66); it is
(11,15, L —1:1,:14,1,,L)

=[P(L)Q(L —1)/(4L>—1)]"2/2L , (12)
where

P(L)=(L =1, +L)L +1,+1,+1)=10,
(13)

QWL —1)=WU;+l,—L +1INL -1+, -1, +1)=2.
Hence
(1:1:2)=1/(2V3) . (14)
Similarly (1:5:0) is a special case of a matrix element
(1:5:0)=(51,52,5:51:51,52,5 —1) (15)

with s, =s,=7, S =1. This matrix element is evaluated
in the same way,

(51,52,5:51:51,52,8 —1)

=[P(S)Q(S —1)/(45*—1)]'"?/2S ,
P(S)=(S —s;+5,)(S +s,;+s,+1)=3, (16)
Q(S—1)=(s,4+5;—S+ 1S —1+s;—s,+1)=1, (17
SO

(1:is:0)=75 . (18)

It therefore follows that the product (1:/:2)(1:s:0)
which appears in all of the matrix elements above is equal
to

(1:1:22)(1:5:0)=1/(4V3) . (19)

The remaining unknown quantities are the radial fac-
tors & 4¢, Spe», and §pp. Within the SCF approximation in
the separated atom limit, these are all equal, and their
common value determines the spin-orbit splitting in the 3P

J
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term. The spin-orbit coupling operator commutes with
the total angular momentum, so atomic energy levels are
characterized by quantum numbers |SL JM ), and the
energy level formula is

E'=(SLJM |H'|SLJM)
=26(SLJM |l;-s,|SLIM), (20)

where § is again the radial part of the matrix element.
Now [s; is an operator of the type discussed on p. 71 of
CS, and we find from the first of their equations 1232,

(SLIM |I;s|SLIM)
= (S:5:S)WL:ly:L)
X3[JJ+1)—L(L+1)—S(S+1)]. 30

The reduced matrices appearing in this formula are
evaluated on p. 64, Eq. 10°2a. In the present case (*P) we
have S=1, L =1, s1:s2=%, ly=1,=1,s0

(Ss;:8)=1,
(L:d:L)=~ .
Therefore the spin-orbit coupling energy is equal to
E'=(5OJJ+D—LL+D)-S(S+D]  (23)
and the splitting between state J and state J —1 is
AE'=E;—E;_,
=& . (24)

Measured values of these energy levels are given in
Charlotte Moore’s tables.?> For J=2,1,0, respectively,
the values are 0.0, 341.8, and 490.6 cm~!. From this we
conclude that {=2AE’/J must be 320+20 cm ..

Finally we combine the above results, using the above-
mentioned approximation that all £{’s have the same value.
The result is

(A, |H'|C)=2¢/(4V3)=92.4 cm~'=4.21 X 10 * hartrees ,
(Bo |H'|C)Y=2£X2/(4V3)=184.8 cm~'=8.42 < 10~ * hartrees ,
(B, |H'|D,)=(2£/4V3)V3=160 cm~!'=7.29 < 10~* hartrees . (25)

The most significant approximation made in this
analysis is the use of the same asymptotic value of § for
all matrix elements. This probably leads to overestima-
tion of these couplings. We think that the correct values
lie somewhere between 0.7 and 1.0 times the values given
above.

V. DYNAMICS OF INELASTIC TRANSITIONS

We now examine in more detail the inelastic (*P-1D)
transitions that are observed at small angles.

A. Theoretical methods

A complete quantum-mechanical description of these
collisions would involve an expansion of the full wave
function for electrons and nuclei in a basis set that would
include at least the fourteen electronic states that correlate
to the atomic P and !D terms. Significant couplings
among these states occur in two regions: near the curve
crossings, where A<>C, B«>C, and B<>-D transitions take
place, and at large separations, where the competition
among electrostatic, spin-orbit, and rotational couplings
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causes the states to lock onto the internuclear axis and
change from space-fixed atomic to rotating molecular
states. This complete description would involve integra-
tion of many coupled differential equations in each partial
wave. However, such a complete and complicated
description is neither necessary nor desirable at present.
The available experimental results can be interpreted
much more easily by the use of the simplifying approxi-
mations listed below.

(1) The rotational couplings at large R are independent
of the curve crossings at smaller R. The regions in which
each of these couplings are important are well separated,
and one set of transitions is complete before the other be-
gins to occur. Because in this case the spin-orbit interac-
tions are small, the coupling problem at large R can be
solved using the sudden approximation.*® Independent of
that approximation, however, since the atomic states
within each atomic term are statistically populated, it fol-
lows that the initial or incident population of molecular
states will also be statistical. Thus we may think of the
initial conditions associated with the 3P— 'D excitation as
being an incoherent mixture with + of the atoms entering
the I term and + of the atoms entering the ’3 term.
Similarly, initial conditions associated with the 'D—3P
deexcitation are an incoherent mixture of % IA, % ', and
T 1=+,

(2) The change of angular momentum of the electrons
(L =1<»L =2) does not significantly affect the relative
motion of the atoms, and the relative angular momentum
is essentially conserved. It follows that the wave func-
tions for relative motion of the atoms can be expanded in
Legendre polynomials, and the amplitude for scattering to
angle O if the initial electronic state is m and the final
state is »n is given by

Fmnon(@) =ik, ) ™' 3 (2N +1)Py(cosON Sy —8pmn) -
N

(26)

Here k, is the wave vector associated with the initial
state, and Y;X,, is the element of the ¥ matrix for the
Nth partial wave. This approximation is justified by the
fact that the relevant values of N are in the hundreds,
while the change of N is only one unit.

(3) The . matrix is calculated by treating the relative
atomic motion in each partial wave semiclassically. This
combination of semiclassical approximation in each par-
tial wave together with numerical summation over N is
called a semiquantal approximation, and a general semi-
quantal framework for inelastic processes was developed
and implemented in Refs. 31 and 32. With this approxi-
mation, the . matrix is given by

S pn=expli (pp +9N UGG V), 27)

where 7, is the WKB phase shift associated with elastic
scattering on the nth state. The matrix G is the half-

collision evolution matrix
clo0)=Gc(0) (28a)

associated with the electronic amplitudes which satisfy
the “classical trajectory equations”

iﬁic(t)Z(b+v1_’)g(t) . (28b)

dt—

The forms of & and P depend upon the representation
chosen. In the present case, the potential curves shown in
Fig. 4 constitute a “‘diabatic’ representation, in which the
spin-orbit terms in the Hamiltonian are nondiagonal, but
P-matrix elements vanish between singlet and triplet
states. The corresponding adiabatic representation is ob-
tained by diagonalizing the full Hamiltonian including
spin-orbit couplings. Our programs had been set up to
perform calculations in this adiabatic representation.

(4) The three curve crossings are independent, and the
couplings are sufficiently weak that the total excitation
probability can be obtained by adding excitation ampli-
tudes for each crossing. Thus we reduce the description
to three separate two-state crossing problems. Our calcu-
lations indicate that the transition probability at each
crossing is less than 0.05, and that the crossings are well
separated, so this approximation should have less than
5% error.

(5) For small angular momentum quantum numbers
(N <300 or so, depending on the pair of states involved),
when the classical turning point is well inside the crossing
point, the Landau-Zener formula gives an adequate ap-
proximation to the G matrix. For larger N, where the
turning point is close to the crossing point, a quadratic
model described in Ref. 32 can be used, and the G matrix
is obtained by integration of a pair of coupled equations
which are a special case of (28b).

Each of the above approximations is well justified in
the present context. They greatly simplify the calcula-
tions and reduce the computer time required. In addition,
they directly provide a semiclassical interpretation of the
results. For example, semiclassical deflection functions
are given by derivatives such as

d
G(b)———z[(nl—i—nz)i(rﬁtrz)] , (29)

where '} and I'; are phases associated with the two-state
G matrix.*?

Additional details regarding the methods used are given
in Refs. 31 and 32.

B. Results

Deflection functions associated with the B<C
(32 ~«!=*) crossing are shown in Fig. 5, and the associ-
ated differential cross section is shown in Fig. 6. These
plots have the following interpretation. The F* ap-
proaches the Ne with a c.m. energy of 9.75 eV and an im-
pact parameter b, such that N =(2uE)!/?b /#. The F* is
initially in the C('=%) molecular state, having come from
the atomic 'D state, and after the collision the system is in
the B(°II) state going out to the atomic *P. Transitions
primarily occur near the crossing, and they can take place
either on the incoming or outgoing part of the trajectory.
Hence there are two paths leading from the initial state to
the final state, and these paths give the scattering angles
shown. The deflection functions shown in Fig. 5 refer to
the c.m. frame. On the other hand, the differential cross
section shown in Fig. 6 refers to the laboratory frame.
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FIG. 5. Deflection functions associated with the B—C tran-
sition. The scattering angle is given in radians in the center-of-
mass (c.m.) frame. N is the angular momentum quantum num-
ber for the heavy particles.

For N =0, the F* is scattered backwards, to =, and
as N increases the scattering angles decrease. One of
them passes through zero and then reaches a minimum of
about —0.21 rad (—12°) at N ~315. This deflection func-
tion arises from deexcitations that occur on the outgoing
part of the trajectory. The other deflection function arises
from deexcitations that occur on the incoming part of the
trajectory. In this case the F* ion moves on the repulsive
B curve for a longer time, and it is scattered to larger an-
gles. The two deflection functions pass through each oth-
er at N ~ 340, where it happens that they are both close to
6=0. (For N > 340 the deflection functions have curious
but physically irrelevant behavior, because the transition

3.00+

2.20

0.60

log,o o(8)
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-1.80 I 1 L L L L L 1 I J
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FIG. 6. Differential cross section for C— B transition (labo-
ratory frame). o(0) is given in bohr?/steradian.
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probability is exponentially small in that region.3?)

The minimum in the lower branch of the deflection
function gives rise to a “rainbow.”*>33 The classical for-
mula for the differential cross section is

b(0)db

Om—n(0)=P, _,(b(6)) Sin0do (30)
where P,,_,, is the transition probability. This classical
formula diverges when d6/db =0, and for angles outside
the rainbow it gives no contribution. In semiclassical
mechanics the singularity is spread out into an Airy func-
tion. The rainbow angle in the laboratory frame is about
6% in Fig. 6 one sees that in this region the differential
cross section is rapidly decreasing with increasing angle
(note the logarithmic scale).

For scattering angles larger than the rainbow angle,
there are two paths, or two different impact parameters
that lead to the same final scattering angle. Hence the
differential cross section shows smooth oscillations
representing interference of amplitude associated with
these paths. At angles smaller than the rainbow angle,
there are four different paths leading to the same final
scattering angle, and a much more complicated interfer-
ence pattern is found there.

Most important, the deflection functions pass through
zero at N ~275 and at N ~340. At this point the classi-
cal formula for the differential cross section gives another
singularity (sin@=0) known as the “forward glory.” The
semiquantal formula gives a finite but very large differen-
tial cross section at 6=0. It is this small-angle peak that
is seen in the experiments.

The other two curve crossings provide two other routes
to deexcitation. Differential cross sections for them have
also been calculated, and similar phenomena are seen. To
obtain the total differential cross section for 'D—3P, we
added these calculated cross sections, incorporating the
statistical factors mentioned earlier. (Note also that the
C— A transition counts twice, because there are two A
states coupled to the C state.) The result is wildly oscilla-
tory and small at most angles, but sharply peaked at 6=0.

Finally, we convoluted this theoretical differential cross
section with a Gaussian function having a FWHM of
1.66°,

Oco )= [ 0carcl0)g(8'—O)sin@'d 6’ . (31)

The result is shown in Fig. 3 along with the experimental
measurements. The two results were normalized to match
at 0=0. They agree with each other beautifully at all oth-
er angles. One has to admit, however, that this agreement
comes more from the convolution procedure than from
the scientifically interesting parts of the theory. The basic
conclusion of the theoretical calculation is that the dif-
ferential cross section is very sharply peaked in the for-
ward direction, having FWHM on the order of 0.1°.

VI. CONCLUSIONS

Observations of collisions of F* with Ne show that
D3P transitions take place such that an observable
current is seen in the forward direction only. Calculations
of the potential energy curves show the presence of three
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curve crossings that mediate these transitions. A semi-
quantal calculation shows that the sharp peaking of the
cross section in the forward direction is related to a glory
effect.

Two other interesting questions are raised by this work,
but are not yet definitely answered. Observations show
that these collisions can also lead to charge exchange, but
at the moment a curve crossing that would mediate this
process has not been identified. Also some evidence has
been found that the molecular ion NeF+ may be stable or
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metastable, but neither theory nor experiment establishes
this conclusively.
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