594 research outputs found

    Circadian rhythm of oestradiol: Impact on the bone metabolism of adult males

    Get PDF
    Background: Few studies have examined the variation in oestradiol with respect to age and circadian rhythm and the subsequent effects on BMD. Aim: Demonstrate the presence or absence of a circadian rhythm for oestrodial in older men and the integral role of concerted circadian rhythms of several factors including parathyroid hormone (PTH) in regulating biochemical markers of bone resorption and formation. Examine whether concentrations of both circulating total and bioavailable oestrogen in men differ with age and BMD. Design: Males were recruited: young men with normal BMD, older men with normal BMD and older men with osteoporosis. Methods: Subjects were hospitalized for a 25-hour period. Blood samples were obtained every 30 minutes. Hormone analysis results were plotted and reviewed. Results: Both total and bioavailable oestradiol concentrations were significantly lower in the older men than the young men (Total oestradiol: 34.5±4.4 pmol/L vs. 49.0±6.5 pmol/L, p<0.0001; Bioavailable oestradiol 16.7±2.2 pmol/L vs. 26.3±3.6 pmol/L, p<0.0001). Bioavailable oestrogen rhythm mirrored that of total estrogen. Conclusion: Both age groups with normal BMD display circadian rhythmicity with respect to circulating and bioavailable oestradiol. Younger men have increased mean total and bioavailable oestrogen concentrations and later acrophase compared to older counterparts. In older men with low BMD, total circulating oestrogen was not significantly different compared to age-matched older men with normal BMD; bioavailable oestrogen was significantly lower. Total oestrogen demonstrated a concerted circadian rhythm in all 3 groups, but bioavailable oestrogen did not demonstrate circadian rhythmicity in older men with decreased BMD

    Road exposure and the detectability of birds in field surveys

    Get PDF
    Road ecology, the study of the impacts of roads and their traffic on wildlife, including birds, is a rapidly growing field, with research showing effects on local avian population densities up to several kilometres from a road. However, in most studies, the effects of roads on the detectability of birds by surveyors are not accounted for. This could be a significant source of error in estimates of the impacts of roads on birds and could also affect other studies of bird populations. Using road density, traffic volume and bird count data from across Great Britain, we assess the relationships between roads and detectability of a range of bird species. Of 51 species analysed, the detectability of 36 was significantly associated with road exposure, in most cases inversely. Across the range of road exposure recorded for each species, the mean positive change in detectability was 52% and the mean negative change was 36%, with the strongest negative associations found in smaller-bodied species and those for which aural cues are more important in detection. These associations between road exposure and detectability could be caused by a reduction in surveyors’ abilities to hear birds or by changes in birds’ behaviour, making them harder or easier to detect. We suggest that future studies of the impacts of roads on populations of birds or other taxa, and other studies using survey data from road-exposed areas, should account for the potential impacts of roads on detectability.The BBS is jointly funded by the BTO, JNCC and RSPB. Stuart Newson is supported by the BTO’s Young Scientists’ Programme. Sophia C. Cooke is funded by the Natural Environment Research Council

    Presupernova Structure of Massive Stars

    Full text link
    Issues concerning the structure and evolution of core collapse progenitor stars are discussed with an emphasis on interior evolution. We describe a program designed to investigate the transport and mixing processes associated with stellar turbulence, arguably the greatest source of uncertainty in progenitor structure, besides mass loss, at the time of core collapse. An effort to use precision observations of stellar parameters to constrain theoretical modeling is also described.Comment: Proceedings for invited talk at High Energy Density Laboratory Astrophysics conference, Caltech, March 2010. Special issue of Astrophysics and Space Science, submitted for peer review: 7 pages, 3 figure

    Black Holes in Higher-Dimensional Gravity

    Full text link
    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22, 200

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
    • 

    corecore