17 research outputs found
Familial perisylvian polymicrogyria: a new familial syndrome of cortical maldevelopment
Two familial X-linked dominant syndromes of cortical maldevelopment have recently been described: double cortex/lissencephaly syndrome and bilateral periventricular nodular heterotopia. We report on 12 kindreds with familial perisylvian polymicrogyria (FPP) presenting at 10 centers, examine the clinical presentation in these familial cases, and propose a possible mode of inheritance. The clinical and radiological pattern was variable among the 42 patients, with clinical differences among the families and even within members of the same family. Pseudobulbar signs, cognitive deficits, epilepsy, and perisylvian abnormalities on imaging studies were not found in all patients. When present, they displayed a spectrum of severity. The only clear correlation in this study was between bilateral imaging findings and abnormal tongue movements and/or pronounced dysarthria. Most of the families provided evidence suggestive of, or compatible with, X-linked transmission. On the other hand, the pedigrees of 2 families ruled out X-linked inheritance. The most likely mode of inheritance for these 2 families was autosomal dominant with decreased penetrance; however, autosomal recessive inheritance with pseudodominance could not be ruled out in 1 family. We conclude that FPP appears to be genetically heterogeneous. However, most of the families probably represent a third previously undescribed X-linked syndrome of cortical maldevelopment. Ann Neurol 2000;48:39â48FLWINinfo:eu-repo/semantics/publishe
Dinosaurs, But Not Only: Vertebrate Evolution in the Mesozoic
If we imagine walking through Mesozoic lands, we would be able to observe vertebrates with peculiar combinations of morphological traits, some of which would seem to be intermediary to animals seen today. We would witness a terrestrial vertebrate fauna dominated by dinosaurs of various sizes and diversity, accompanied by many other animal groups that often are overlooked. Current research suggests that many of the main vertebrate clades existing today originated or diversified sometime in the Triassic or Early to Middle Jurassic. Herein, we profile some of the major transformations in both terrestrial and aquatic vertebrate evolution during the Mesozoic. We highlight: the appearance of features that allowed sauropod dinosaurs to become the largest animals to ever walk on Earthâs continents, the appearance of herbivory among the usually carnivorous theropod dinosaurs, and we follow the specific changes that led to the evolution of avian flight. Our Mesozoic tour across the globe will allow us to see how different evolutionary forces led to convergent shifts to quadrupedality in ornithischian dinosaurs and to an aquatic lifestyle in turtles, crocodiles, and plesiosaurs. Last, but not least, we examine changes in the Mesozoic fauna linked to the rise of mammals, and the diversification patterns in several clades of fishes after the End-Permian Mass Extinction