523 research outputs found

    Providing patients with direct access to musculoskeletal physiotherapy: the impact on general practice musculoskeletal workload and resource use. The STEMS-2 study.

    Get PDF
    OBJECTIVES: This study examined the real-world impact of patient direct access to NHS physiotherapy (self-referral) on (a) general practice consultations for musculoskeletal (MSK) conditions and (b) specified clinical management for patients with MSK conditions. DESIGN AND SETTING: Natural experiment in four general practices and the associated physiotherapy service. METHODS: Anonymised routinely collected data were obtained. MSK coded GP consultations, recorded fit notes, MSK-related prescription medication, X-rays and MRI requests, and referrals to secondary care for patients consulting with MSK conditions were identified and trends described across a 6-year period (June 2011 to June 2017). Joinpoint regression analysis was used to identify any significant changes in GP MSK consultation trends before and after the introduction of self-referral to physiotherapy. Physiotherapy service data examined access methods used by patients (GP referred, GP recommended self-referral, true self-referral) and the number of physiotherapy sessions. RESULTS: Direct access resulted in inconsistent impact on general practices. In one arm of the experiment a significant increase in GP consultations was observed and in one arm was stable. Exploratory examination of clinical management showed only requests for X-rays (arm 1) and possibly requests for MRI (arm 2) changed over time. Physiotherapy service referrals showed a low uptake of true self-referral (10% and 6%) in each arm respectively. CONCLUSION: This is the first study to examine the real-world impact of patient direct access to physiotherapy at general practice level. We found no consistent impact of patient direct access on GP MSK workload. Impact on some clinical management was observed but not consistently in the direction suggested by previous studies

    Local mean-field study of capillary condensation in silica aerogels

    Full text link
    We apply local mean-field (i.e. density functional) theory to a lattice model of a fluid in contact with a dilute, disordered gel network. The gel structure is described by a diffusion-limited cluster aggregation model. We focus on the influence of porosity on both the hysteretic and the equilibrium behavior of the fluid as one varies the chemical potential at low temperature. We show that the shape of the hysteresis loop changes from smooth to rectangular as the porosity increases and that this change is associated to disorder-induced out-of-equilibrium phase transitions that differ on adsorption and on desorption. Our results provide insight in the behavior of 4^4He in silica aerogels.Comment: 19 figure

    Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain Parenchyma and Target the Cervical Lymph Nodes under Neuroinflammatory Conditions

    Get PDF
    BACKGROUND: In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres(+) APCs or CFSE(+) DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen. CONCLUSIONS/SIGNIFICANCE: Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS

    Beyond the public and private divide: Remapping transnational climate governance in de 21th century

    Get PDF
    This article provides a first step towards a better theoretical and empirical knowledge of the emerging arena of transnational climate governance. The need for such a re-conceptualization emerges from the increasing relevance of non-state and transnational approaches towards climate change mitigation at a time when the intergovernmental negotiation process has to overcome substantial stalemate and the international arena becomes increasingly fragmented. Based on a brief discussion of the increasing trend towards transnationalization and functional segmentation of the global climate governance arena, we argue that a remapping of climate governance is necessary and needs to take into account different spheres of authority beyond the public and international. Hence, we provide a brief analysis of how the public/private divide has been conceptualized in Political Science and International Relations. Subsequently, we analyse the emerging transnational climate governance arena. Analytically, we distinguish between different manifestations of transnational climate governance on a continuum ranging from delegated and shared public-private authority to fully non-state and private responses to the climate problem. We suggest that our remapping exercise presented in this article can be a useful starting point for future research on the role and relevance of transnational approaches to the global climate crisis

    Non-coding RNA annotation of the genome of Trichoplax adhaerens

    Get PDF
    A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs—in particular rRNAs, tRNAs and some snRNAs—we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome

    Advances in Pathway Engineering for Natural Product Biosynthesis

    Get PDF
    Biocatalysts provide an efficient, inexpensive and environmentally friendly alternative to traditional organic synthesis, especially for compounds with complex stereochemistries. The past decade has seen a significant rise in the use of biocatalysts for the synthesis of compounds in an industrial setting; however, the incorporation of single enzymatically catalysed steps into organic synthesis schemes can be problematic. The emerging field of synthetic biology has sparked interest in the development of whole-cell factories that can convert simple, common metabolites into complex, high-value molecules with a range of applications such as pharmaceuticals and biofuels. This Review summarises conventional methods and recent advances in metabolic engineering of pathways in microorganisms for the synthesis of natural products

    Spatio-Temporal Variation in Length-Weight Relationships and Condition of the Ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for Fisheries Management

    Get PDF
    Knowledge of length-weight relationships for commercially exploited fish is an important tool for assessing and managing of fish stocks. However, analyses of length-weight relationship fisheries data typically do not consider the inherent differences in length-weight relationships for fish caught from different habitats, seasons, or years, and this can affect the utility of these data for developing condition indices or calculating fisheries biomass. Here, we investigated length-weight relationships for ribbonfish Trichiurus lepturus in the waters of the Arabian Sea off Oman collected during three periods (2001-02, 2007-08, and 2014-15) and showed that a multivariate modelling approach that considers the areas and seasons in which ribbonfish were caught improved estimation of length-weight relationships. We used the outputs of these models to explore spatio-temporal variations in condition indices and relative weights among ribbonfish, revealing fish of 85-125 cm were in the best overall condition. We also found that condition differed according to where and when fish were caught, with condition lowest during spring and pre-south-west monsoon periods and highest during and after the south-west monsoons. We interpret these differences to be a consequence of variability in temperature and food availability. Based on our findings, we suggest fishing during seasons that have the lowest impact on fish condition and which are commercially most viable; such fishery management would enhance fisheries conservation and economic revenue in the region

    Loss of p53 Ser18 and Atm Results in Embryonic Lethality without Cooperation in Tumorigenesis

    Get PDF
    Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm−/− animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53S18A and Atm−/− animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm−/− animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination
    corecore