299 research outputs found

    Efficient genotype compression and analysis of large genetic-variation data sets

    Get PDF
    Genotype Query Tools (GQT) is an indexing strategy that expedites analyses of genome-variation data sets in Variant Call Format based on sample genotypes, phenotypes and relationships. GQT's compressed genotype index minimizes decompression for analysis, and its performance relative to that of existing methods improves with cohort size. We show substantial (up to 443-fold) gains in performance over existing methods and demonstrate GQT's utility for exploring massive data sets involving thousands to millions of genomes. GQT can be accessed at https://github.com/ryanlayer/gqt

    Lowering the glycemic index of white bread using a white bean extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase 2<sup>® </sup>is a dietary supplement derived from the common white kidney bean (Phaseolus vulgaris). Phase 2 has been shown to inhibit alpha-amylase, the complex carbohydrate digesting enzyme, in vitro. The inhibition of alpha-amylase may result in the lowering of the effective Glycemic Index (GI) of certain foods. The objective of this study was to determine whether the addition of Phase 2 would lower the GI of a commercially available high glycemic food (white bread).</p> <p>Methods</p> <p>An open-label 6-arm crossover study was conducted with 13 randomized subjects. Standardized GI testing was performed on white bread with and without the addition of Phase 2 in capsule and powder form, each in dosages of 1500 mg, 2000 mg, and 3000 mg. Statistical analysis was performed by one-way ANOVA of all seven treatment groups using unadjusted multiple comparisons (t tests) to the white bread control.</p> <p>Results</p> <p>For the capsule formulation, the 1500 mg dose had no effect on the GI and the 2000 mg and 3000 mg capsule doses caused insignificant reductions in GI. For the powder, the 1500 mg and 2000 mg doses caused insignificant reductions in the GI, and the 3000 mg dose had a significant effect (-20.23 or 34.11%, p = 0.023)</p> <p>Conclusion</p> <p>Phase 2 white bean extract appears to be a novel and potentially effective method for reducing the GI of existing foods without modifying their ingredient profile.</p> <p>Trial Registration</p> <p>Trial Registration: ISRCTN50347345</p

    An enhanced model for digital reference services

    Get PDF
    Digital Reference Service (DRS) play a vital role in the Digital Library (DL) research. DRS is a very valuable service provided by DL. Unfortunately, the reference service movement towards digital environment begins late, and this shift was not model based. So, a journey towards a digital environment without following a proper model raises some issues. A few researchers presented a general process model (GPM) in the late 1990s, but this process model could not overcome the problems of DRS. This paper proposes an enhanced model for DRS that use the storage and re-use mechanism with other vital components like DRS search engine and ready reference for solving the issues in DRS. Initially, storage and re-use mechanism are designed and finally, DRS search engine is designed to search appropriate answers in the knowledge base. We improved the GPM by incorporating the new components. The simulation results clearly states that the proposed model increased the service efficiency by reducing the response time from days to seconds for repeated questions and decreased the workload of librarian

    Radical SAM enzyme QueE defines a new minimal core fold and metal-dependent mechanism

    Get PDF
    7-carboxy-7-deazaguanine synthase (QueE) catalyzes a key S-adenosyl-L-methionine (AdoMet)- and Mg[superscript 2+]-dependent radical-mediated ring contraction step, which is common to the biosynthetic pathways of all deazapurine-containing compounds. QueE is a member of the AdoMet radical superfamily, which employs the 5′-deoxyadenosyl radical from reductive cleavage of AdoMet to initiate chemistry. To provide a mechanistic rationale for this elaborate transformation, we present the crystal structure of a QueE along with structures of pre- and post-turnover states. We find that substrate binds perpendicular to the [4Fe-4S]-bound AdoMet, exposing its C6 hydrogen atom for abstraction and generating the binding site for Mg[superscript 2+], which coordinates directly to the substrate. The Burkholderia multivorans structure reported here varies from all other previously characterized members of the AdoMet radical superfamily in that it contains a hypermodified ([β [subscript 6] over α [subscript 3]]) protein core and an expanded cluster-binding motif, CX[subscript 14]CX[subscript 2]C.United States. Dept. of Energy. Office of Biological and Environmental ResearchUnited States. Dept. of Energy. Office of Basic Energy SciencesNational Center for Research Resources (U.S.) (P41RR012408)National Institute of General Medical Sciences (U.S.) (P41GM103473)National Center for Research Resources (U.S.) (5P41RR015301-10)National Institute of General Medical Sciences (U.S.) (8 P41 GM 103403-10)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Mapping and phasing of structural variation in patient genomes using nanopore sequencing

    Get PDF
    Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline—NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications

    Identification of rare de novo epigenetic variations in congenital disorders

    Get PDF
    Certain human traits such as neurodevelopmental disorders (NDs) and congenital anomalies (CAs) are believed to be primarily genetic in origin. However, even after whole-genome sequencing (WGS), a substantial fraction of such disorders remain unexplained. We hypothesize that some cases of ND-CA are caused by aberrant DNA methylation leading to dysregulated genome function. Comparing DNA methylation profiles from 489 individuals with ND-CAs against 1534 controls, we identify epivariations as a frequent occurrence in the human genome. De novo epivariations are significantly enriched in cases, while RNAseq analysis shows that epivariations often have an impact on gene expression comparable to loss-of-function mutations. Additionally, we detect and replicate an enrichment of rare sequence mutations overlapping CTCF binding sites close to epivariations, providing a rationale for interpreting non-coding variation. We propose that epivariations contribute to the pathogenesis of some patients with unexplained ND-CAs, and as such likely have diagnostic relevance.The authors are grateful to the patients and families who participated in this study and to the collaborators who supported patient recruitment. This work was supported by NIH grant HG006696 and research grant 6-FY13-92 from the March of Dimes to A.J.S., grant HL098123 to B.D.G. and A.J.S., Gulbenkian Programme for Advanced Medical Education and the Portuguese Foundation for Science and Technology (SFRH/BDINT/51549/ 2011, PIC/IC/83026/2007, PIC/IC/83013/2007, SFRH/BD/90167/2012, Portugal) to P.M., F.L., and M.B., by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013) to P.M., a Beatriu de Pinos Postdoctoral Fellowship to R.S.J. (2011BP-A00515), and a Seaver Foundation fellowship to S.D.R. The views expressed are those of the authors and do not necessarily reflect those of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.The authors are grateful to the patients and families who participated in this study and to the collaborators who supported patient recruitment. This work was supported by NIH grant HG006696 and research grant 6-FY13-92 from the March of Dimes to A.J.S., grant HL098123 to B.D.G. and A.J.S., Gulbenkian Programme for Advanced Medical Education and the Portuguese Foundation for Science and Technology (SFRH/BDINT/51549/ 2011, PIC/IC/83026/2007, PIC/IC/83013/2007, SFRH/BD/90167/2012, Portugal) to P.M., F.L., and M.B., by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013) to P.M., a Beatriu de Pinos Postdoctoral Fellowship to R.S.J. (2011BP-A00515), and a Seaver Foundation fellowship to S.D.R. The views expressed are those of the authors and do not necessarily reflect those of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award number S10OD018522. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai

    A combined computational and experimental investigation of the [2Fe–2S] cluster in biotin synthase

    Get PDF
    Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe–2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe···Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe–2S] clusters. The exceptionally large Fe···Fe distance found in the crystal structure could not be reproduced

    Discovery and population genomics of structural variation in a songbird genus

    Get PDF
    Structural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions. We exploit sampling across wide phylogenetic timescales to validate SV genotypes and assess the contribution of SV to evolutionary processes in an avian model of incipient speciation. We reveal an evolutionary young (~530,000 years) cis-acting 2.25-kb LTR retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth and evolutionary significance of SV segregating in natural populations and highlight the need for reliable SV genotyping

    Memantine increases NMDA receptor level in the prefrontal cortex but fails to reverse apomorphine-induced conditioned place preference in rats

    Get PDF
    Studies have shown that inflammation and neurodegeneration may accompany the development of addiction to apomorphine and that the glutamate NMDA receptor antagonist, memantine, may be neuroprotective. The similarity between apomorphine and dopamine with regard to their chemical, pharmacological and toxicological properties provided a basis for investigating the mechanism of action of the former agent. In this study, we investigated whether memantine would suppress apomorphine-seeking behavior in rats subjected to apomorphine-induced place preference conditioning, through modulation of NMDA receptors in the prefrontal cortex. Repeated apomorphine (1 mg/kg) treatment induced conditioned place preference (CPP) and had no significant effect on NMDA receptor levels in the prefrontal cortex. Prior treatment with memantine (5 mg/kg or 10 mg/kg) increased the levels of NMDA receptors in the prefrontal cortex but did not suppress CPP induced by apomorphine. These data give further support to the addictive effect of apomorphine and demonstrate that blockade of NMDA receptors by memantine is unable to suppress apomorphine-seeking behavior

    Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

    Get PDF
    The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure
    corecore