188 research outputs found

    A survey of sports drinks consumption amongst adolescents

    Get PDF
    Background Sports drinks intended to improve performance and hydrate athletes taking part in endurance sport are being marketed to children, for whom these products are not intended. Popularity among children has grown exponentially. Worryingly they consume them socially, as well as during physical activity. Sports drinks are high in sugar and are acidic. Product marketing ignores the potential harmful effects of dental caries and erosion. Objective To investigate the use of sports drinks by children. Method One hundred and eighty-three self-complete questionnaires were distributed to four schools in South Wales. Children in high school years 8 and 9 (aged 12–14) were recruited to take part. Questions focused on use of sports drinks, type consumed, frequency of and reason for consumption and where drinks were purchased. Results One hundred and sixty children responded (87% response rate): 89.4% (143) claimed to drink sports drinks, half drinking them at least twice a week. Lucozade Sport™ was the most popular brand. The main reason for consuming the drinks was attributed to the 'nice taste' (90%, 129/143). Most respondents purchased the drinks from local shops (80.4%, 115) or supermarkets (54.5%, 78). More boys claimed to drink sports drinks during physical activity (77.9% versus 48.6% girls, P <0.001). Whereas more girls claimed to drink them socially (51.4% versus 48.5% boys, NS). Conclusion A high proportion of children consumed sports drinks regularly and outside of sporting activity. Dental health professionals should be aware of the popularity of sports drinks with children when giving health education advice or designing health promotion initiatives

    Agronomic Management of Indigenous Mycorrhizas

    Get PDF
    Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998). Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry. Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs. It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002). Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial. Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development. In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production

    All Effects of Psychophysical Variables on Color Attributes: A Classification System

    Get PDF
    This paper reports the research and structuring of a classification system for the effects of psychophysical variables on the color attributes. A basic role of color science is to psychophysically specify color appearance. An early stage is to specify the effects of the psychophysical variables (as singles, pairs, etc) on the color attributes (as singles, pairs, etc), for example to model color appearance. Current data on effects are often scarce or conflicting. Few effects are well understood, and the practice of naming effects after their discoverer(s) is inadequate and can be confusing. The number and types of possible effects have never been systematically analyzed and categorized. We propose a simple and rigorous system of classification including nomenclature. The total range of effects is computed from the possible combinations of three psychophysical variables (luminance, dominant wavelength, purity) and six color attributes (lightness, brightness, hue, chroma, colorfulness, saturation) in all modes of appearance. Omitting those effects that are normally impossible to perceive at any one time (such as four- or five-dimensional colors), the total number perceivable is 161 types of effects for all modes of appearance. The type of effect is named after the psychophysical stimulus (or stimuli) and the relevant color attribute(s), e.g., Luminance-on-hue effect (traditionally known as Bezold-Brucke effect). Each type of effect may include slightly different effects with infinite variations depending on experimental parameters.M. Melgosa was supported by the Ministry of Economy and Competitiveness of the Government of Spain, research project FIS2013-40661-P, with the European Research Development Fund

    TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimental autoimmune encephalomyelitis (EAE) depends on the initial activation of CD4<sup>+</sup> T cells responsive to myelin autoantigens. The key antigen presenting cell (APC) population that drives the activation of naïve T cells most efficiently is the dendritic cell (DC). As such, we should be able to trigger EAE by transfer of DC that can present the relevant autoantigen(s). Despite some sporadic reports, however, models of DC-driven EAE have not been widely adopted. We sought to test the feasibility of this approach and whether activation of the DC by toll-like receptor (TLR)-4 ligation was a sufficient stimulus to drive EAE.</p> <p>Findings</p> <p>Host mice were seeded with myelin basic protein (MBP)-reactive CD4+ T cells and then were injected with DC that could present the relevant MBP peptide which had been exposed to lipopolysaccharide as a TLR-4 agonist. We found that this approach induced robust clinical signs of EAE.</p> <p>Conclusions</p> <p>DC are sufficient as APC to effectively drive the differentiation of naïve myelin-responsive T cells into autoaggressive effector T cells. TLR-4-stimulation can activate the DC sufficiently to deliver the signals required to drive the pathogenic function of the T cell. These models will allow the dissection of the molecular requirements of the initial DC-T cell interaction in the lymphoid organs that ultimately leads to autoimmune pathology in the central nervous system.</p

    Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial

    Get PDF
    The Neoproterozoic era witnessed a succession of biological innovations that culminated in diverse animal body plans and behaviours during the Ediacaran–Cambrian radiations. Intriguingly, this interval is also marked by perturbations to the global carbon cycle, as evidenced by extreme fluctuations in climate and carbon isotopes. The Neoproterozoic isotope record has defied parsimonious explanation because sustained 12C-enrichment (low δ13C) in seawater seems to imply that substantially more oxygen was consumed by organic carbon oxidation than could possibly have been available. We propose a solution to this problem, in which carbon and oxygen cycles can maintain dynamic equilibrium during negative δ13C excursions when surplus oxidant is generated through bacterial reduction of sulfate that originates from evaporite weathering. Coupling of evaporite dissolution with pyrite burial drives a positive feedback loop whereby net oxidation of marine organic carbon can sustain greenhouse forcing of chemical weathering, nutrient input and ocean margin euxinia. Our proposed framework is particularly applicable to the late Ediacaran ‘Shuram’ isotope excursion that directly preceded the emergence of energetic metazoan metabolisms during the Ediacaran–Cambrian transition. Here we show that non-steady-state sulfate dynamics contributed to climate change, episodic ocean oxygenation and opportunistic radiations of aerobic life during the Neoproterozoic era

    Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Influenza A H1N1 virus can be transmitted via direct, indirect, and airborne route to non-infected subjects when an infected patient coughs, which expels a number of different sized droplets to the surrounding environment as an aerosol. The objective of the current study was to characterize the human cough aerosol pattern with the aim of developing a standard human cough bioaerosol model for Influenza Pandemic control.</p> <p>Method</p> <p>45 healthy non-smokers participated in the open bench study by giving their best effort cough. A laser diffraction system was used to obtain accurate, time-dependent, quantitative measurements of the size and number of droplets expelled by the cough aerosol.</p> <p>Results</p> <p>Voluntary coughs generated droplets ranging from 0.1 - 900 microns in size. Droplets of less than one-micron size represent 97% of the total number of measured droplets contained in the cough aerosol. Age, sex, weight, height and corporal mass have no statistically significant effect on the aerosol composition in terms of size and number of droplets.</p> <p>Conclusions</p> <p>We have developed a standard human cough aerosol model. We have quantitatively characterized the pattern, size, and number of droplets present in the most important mode of person-to-person transmission of IRD: the cough bioaerosol. Small size droplets (< 1 μm) predominated the total number of droplets expelled when coughing. The cough aerosol is the single source of direct, indirect and/or airborne transmission of respiratory infections like the Influenza A H1N1 virus.</p> <p>Study design</p> <p>Open bench, Observational, Cough, Aerosol study</p

    End of Green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia

    Get PDF
    Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections

    NICE : A Computational solution to close the gap from colour perception to colour categorization

    Get PDF
    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms

    Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network

    Get PDF
    Somatic cells can be reprogrammed to induced pluripotent stem cells by over-expression of OCT4, SOX2, KLF4 and c-MYC (OSKM). With the aim of unveiling the early mechanisms underlying the induction of pluripotency, we have analyzed transcriptional profiles at 24, 48 and 72 hours post-transduction of OSKM into human foreskin fibroblasts. Experiments confirmed that upon viral transduction, the immediate response is innate immunity, which induces free radical generation, oxidative DNA damage, p53 activation, senescence, and apoptosis, ultimately leading to a reduction in the reprogramming efficiency. Conversely, nucleofection of OSKM plasmids does not elicit the same cellular stress, suggesting viral response as an early reprogramming roadblock. Additional initiation events include the activation of surface markers associated with pluripotency and the suppression of epithelial-to-mesenchymal transition. Furthermore, reconstruction of an OSKM interaction network highlights intermediate path nodes as candidates for improvement intervention. Overall, the results suggest three strategies to improve reprogramming efficiency employing: 1) anti-inflammatory modulation of innate immune response, 2) pre-selection of cells expressing pluripotency-associated surface antigens, 3) activation of specific interaction paths that amplify the pluripotency signal
    corecore