105 research outputs found

    Ultrasound Does Not Detect Acute Changes in Glycogen in Vastus Lateralis of Man.

    Get PDF
    PURPOSE: To examine the validity of ultrasound (via cloud based software that measures pixilation intensity according to a scale of 0-100) to non-invasively assess muscle glycogen in human skeletal muscle. METHODS: In Study 1, 14 professional male rugby league players competed in an 80-minute competitive rugby league game. In Study 2 (in a randomized repeated measures design), 16 recreationally active males completed an exhaustive cycling protocol to deplete muscle glycogen followed by 36 hours of HIGH or LOW carbohydrate intake (8 v 3 g.kg body mass). In both studies, muscle biopsies and ultrasound scans were obtained from the vastus lateralis (at 50% of the muscle length) before and after match play in Study 1 and at 36 h after glycogen depletion in Study 2. RESULTS: Despite match play reducing (P0.05) were present between changes in muscle glycogen concentration and changes in ultrasound scores. CONCLUSION: Data demonstrate that ultrasound (as based on measures of pixilation intensity) is not valid to measure muscle glycogen status within the physiological range (i.e. 200-500 mmol.kg dw) that is applicable to exercise-induced muscle glycogen utilization and post-exercise muscle glycogen re-synthesis

    Polygenic Mechanisms Underpinning the Response to Exercise-Induced Muscle Damage in Humans: in vivo and in vitro Evidence

    Get PDF
    We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion, muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n=12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score (TGS), which enabled participants to be segregated into three polygenic groups: ‘preferential’ (more ‘protective’ alleles), ‘moderate’, and ‘non-preferential’. The non-preferential group was consistently weaker than the preferential group (1.93±0.81 vs. 2.73±0.59 N∙m/kg; P=9.51x10-4) and demonstrated more muscle soreness (P=0.011) and a larger decrease in knee joint range of motion (P=0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, P≤0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, P≤0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the inter-individual variability in the response to EIMD

    Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics.

    Get PDF
    Hamstring muscle injury is highly prevalent in sports involving repeated maximal sprinting. Although neuromuscular fatigue is thought to be a risk factor, the mechanisms underlying the fatigue response to repeated maximal sprints are unclear. Here, we show that repeated maximal sprints induce neuromuscular fatigue accompanied with a prolonged strength loss in hamstring muscles. The immediate hamstring strength loss was linked to both central and peripheral fatigue, while prolonged strength loss was associated with indicators of muscle damage. The kinematic changes immediately after sprinting likely protected fatigued hamstrings from excess elongation stress, while larger hamstring muscle physiological cross-sectional area and lower myoblast:fibroblast ratio appeared to protect against fatigue/damage and improve muscle recovery within the first 48 h after sprinting. We have therefore identified novel mechanisms that likely regulate the fatigue/damage response and initial recovery following repeated maximal sprinting in humans

    High-fat overfeeding impairs peripheral glucose metabolism and muscle microvascular eNOS Ser1177 phosphorylation.

    Get PDF
    CONTEXT: The mechanisms responsible for dietary fat-induced insulin resistance of skeletal muscle and its microvasculature are only partially understood. OBJECTIVE: To determine the impact of high-fat overfeeding on postprandial glucose fluxes, muscle insulin signaling, and muscle microvascular eNOS content and activation. DESIGN: Fifteen non-obese volunteers consumed a high-fat (64%) high-energy (+47%) diet for 7 days. Experiments were performed before and after the diet. Stable isotope tracers were used to determine glucose fluxes in response to carbohydrate plus protein ingestion. Muscle insulin signaling was determined as well as the content and activation state of muscle microvascular eNOS. RESULTS: High-fat overfeeding impaired postprandial glycemic control as demonstrated by higher concentrations of glucose (+11%; P = 0.004) and insulin (+19%; P = 0.035). Carbohydrate plus protein ingestion suppressed endogenous glucose production to a similar extent before and after the diet. Conversely, high-fat overfeeding reduced whole body glucose clearance (-16%; P = 0.021) and peripheral insulin sensitivity (-26%; P = 0.006). This occurred despite only minor alterations in skeletal muscle insulin signaling. High-fat overfeeding reduced eNOS content in terminal arterioles (P = 0.017) and abolished the increase in eNOS Ser1177 phosphorylation that was seen after carbohydrate plus protein ingestion. CONCLUSION: High-fat overfeeding impaired whole-body glycemic control due to reduced glucose clearance, not elevated endogenous glucose production. The finding that high-fat overfeeding abolished insulin-mediated eNOS Ser1177 phosphorylation in the terminal arterioles suggests that impairments in the vasodilatory capacity of the skeletal muscle microvasculature may contribute to early dietary fat-induced impairments in glycemic control

    A 7-day high-fat, high-calorie diet induces fibre-specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle

    Get PDF
    KEY POINTS: We have recently shown that a high-fat high-calorie (HFHC) diet decreases whole body glucose clearance without impairing skeletal muscle insulin signalling, in healthy lean individuals. These diets are also known to increase skeletal muscle IMTG stores, but the effect on lipid metabolites leading to skeletal muscle insulin resistance has not been investigated. This study measured the effect of 7 days HFHC diet on: 1) skeletal muscle concentration of lipid metabolites, and 2) potential changes in the perilipin (PLIN) content of the lipid droplets (LD) storing IMTG. The HFHC diet increased PLIN3 protein expression and redistributed PLIN2 to LD stores in type I fibres. The HFHC diet increased IMTG content in type I fibres, while lipid metabolite concentrations remained the same. The data suggest that the increases in IMTG stores assists reducing the accumulation of lipid metabolites known to contribute to skeletal muscle insulin resistance. ABSTRACT: A HFHC diet reduces whole body glucose clearance without impairing skeletal muscle insulin signalling in healthy lean individuals. HFHC diets also increase skeletal muscle lipid stores. However, unlike certain lipid metabolites, intramuscular triglyceride (IMTG) stored within lipid droplets (LD) does not directly contribute to skeletal muscle insulin resistance. Increased expression of perilipin (PLIN) proteins and colocalisation to LD has been shown to assist in IMTG storage. We aimed to test the hypothesis that 7 days on a HFHC diet increases IMTG content while minimising accumulation of lipid metabolites known to disrupt skeletal muscle insulin signalling in sedentary and obese individuals. We also aimed to identify changes in expression and subcellular distribution of proteins involved in IMTG storage. Muscle biopsies were obtained from the m. vastus lateralis of 13 (n = 11 males, n = 2 females) healthy lean individuals (age: 23 ± 2.5 y, BMI: 24.5 ± 2.4 kg m-2 ), following an overnight fast, before and after consuming a high-fat (64% energy) high-calorie (+47% kcal) diet for 7 days. After the HFHC diet, IMTG content increased in type I fibres only (+10%; P < 0.001), whereas there was no change in the concentration of either total diacylglycerol (P = 0.123) or total ceramides (P = 0.150). Of the PLINs investigated, only PLIN3 content increased (+50%; P < 0.01) solely in type I fibres. LDs labelled with PLIN2 increased (80%; P < 0.01), also in type I fibres only. We propose that these adaptations to LD support IMTG storage and minimise accumulation of lipid metabolites to protect skeletal muscle insulin signalling following 7 days HFHC diet. This article is protected by copyright. All rights reserved

    Low-Volume High-Intensity Interval Training in a Gym Setting Improves Cardio-Metabolic and Psychological Health.

    Get PDF
    BACKGROUND: Within a controlled laboratory environment, high-intensity interval training (HIT) elicits similar cardiovascular and metabolic benefits as traditional moderate-intensity continuous training (MICT). It is currently unclear how HIT can be applied effectively in a real-world environment. PURPOSE: To investigate the hypothesis that 10 weeks of HIT, performed in an instructor-led, group-based gym setting, elicits improvements in aerobic capacity (VO2max), cardio-metabolic risk and psychological health which are comparable to MICT. METHODS: Ninety physically inactive volunteers (42±11 y, 27.7±4.8 kg.m-2) were randomly assigned to HIT or MICT group exercise classes. HIT consisted of repeated sprints (15-60 seconds, >90% HRmax) interspersed with periods of recovery cycling (≤25 min.session-1, 3 sessions.week-1). MICT participants performed continuous cycling (~70% HRmax, 30-45 min.session-1, 5 sessions.week-1). VO2max, markers of cardio-metabolic risk, and psychological health were assessed pre and post-intervention. RESULTS: Mean weekly training time was 55±10 (HIT) and 128±44 min (MICT) (p<0.05), with greater adherence to HIT (83±14% vs. 61±15% prescribed sessions attended, respectively; p<0.05). HIT improved VO2max, insulin sensitivity, reduced abdominal fat mass, and induced favourable changes in blood lipids (p<0.05). HIT also induced beneficial effects on health perceptions, positive and negative affect, and subjective vitality (p<0.05). No difference between HIT and MICT was seen for any of these variables. CONCLUSIONS: HIT performed in a real-world gym setting improves cardio-metabolic risk factors and psychological health in physically inactive adults. With a reduced time commitment and greater adherence than MICT, HIT offers a viable and effective exercise strategy to target the growing incidence of metabolic disease and psychological ill-being associated with physical inactivity

    Why male orangutans do not kill infants

    Get PDF
    Infanticide is widespread among mammals, is particularly common in primates, and has been shown to be an adaptive male strategy under certain conditions. Although no infanticides in wild orangutans have been reported to date, several authors have suggested that infanticide has been an important selection pressure influencing orangutan behavior and the evolution of orangutan social systems. In this paper, we critically assess this suggestion. We begin by investigating whether wild orangutans have been studied for a sufficiently long period that we might reasonably expect to have detected infanticide if it occurs. We consider whether orangutan females exhibit counterstrategies typically employed by other mammalian females. We also assess the hypothesis that orangutan females form special bonds with particular “protector males” to guard against infanticide. Lastly, we discuss socioecological reasons why orangutan males may not benefit from infanticide. We conclude that there is limited evidence for female counterstrategies and little support for the protector male hypothesis. Aspects of orangutan paternity certainty, lactational amenorrhea, and ranging behavior may explain why infanticide is not a strategy regularly employed by orangutan males on Sumatra or Borneo
    corecore