524 research outputs found
Rupture by damage accumulation in rocks
The deformation of rocks is associated with microcracks nucleation and
propagation, i.e. damage. The accumulation of damage and its spatial
localization lead to the creation of a macroscale discontinuity, so-called
"fault" in geological terms, and to the failure of the material, i.e. a
dramatic decrease of the mechanical properties as strength and modulus. The
damage process can be studied both statically by direct observation of thin
sections and dynamically by recording acoustic waves emitted by crack
propagation (acoustic emission). Here we first review such observations
concerning geological objects over scales ranging from the laboratory sample
scale (dm) to seismically active faults (km), including cliffs and rock masses
(Dm, hm). These observations reveal complex patterns in both space (fractal
properties of damage structures as roughness and gouge), time (clustering,
particular trends when the failure approaches) and energy domains (power-law
distributions of energy release bursts). We use a numerical model based on
progressive damage within an elastic interaction framework which allows us to
simulate these observations. This study shows that the failure in rocks can be
the result of damage accumulation
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
Wild redfronted lemurs (Eulemur rufifrons) use social information to learn new foraging techniques
Recent research has claimed that traditions are not a unique feature of human culture, but that they can be found in animal societies as well. However, the origins of traditions in animals studied in the wild are still poorly understood. To contribute comparative data to begin filling this gap, we conducted a social diffusion experiment with four groups of wild redfronted lemurs (Eulemur rufifrons). We used a ‘two-option’ feeding box, where these Malagasy primates could either pull or push a door to get access to a fruit reward to study whether and how these two behavioural traits spread through the groups. During a pre-training phase, two groups were presented with boxes in which one technique was blocked, whereas two groups were presented with unblocked boxes. During a subsequent unconstrained phase, all four groups were confronted with unblocked boxes. Nearly half of the study animals were able to learn the new feeding skill and individuals who observed others needed fewer unsuccessful task manipulations until their first successful action. Animals in the two groups with pre-training also discovered the corresponding alternative technique but preferred the seeded technique. Interestingly, animals in the two groups without pre-training discovered both techniques, and one group developed a group preference for one technique whereas the other did not. In all groups, some animals also scrounged food rewards. In conclusion, redfronted lemurs appear to use social information in acquiring a novel task, and animals in at least in one group without training developed a group preference for one technique, indicating that they have the potential to develop behavioural traditions and conformity
Genome-Wide Analysis of Structural Variants in Parkinson Disease
OBJECTIVE:
Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD.
METHODS:
We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data.
RESULTS:
We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4.
INTERPRETATION:
We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 202
Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall
Research Areas: Science & TechnologyABSTRACT - In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and
sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris
cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21g/L of reducing
sugars (p<0.001), led to an eight-fold increase in oligosaccharides release (p<0.001), and reduced
the fuorescence intensity by 47% after staining with Calcofuor White (p<0.001). The Mix treatment
was successful in releasing proteins (p<0.001), some MUFA (p<0.05), and the benefcial 18:3n-3 fatty
acid (p0.05), total carotenoids were
increased in the supernatant (p<0.05) from the Mix treatment, relative to the control. Taken together,
these results indicate that this four-enzyme Mix displays an efective capacity to degrade C. vulgaris cell
wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris
nutrients for monogastric diets, in particular, and to facilitate the cost-efective use of microalgae by
the feed industry, in general.info:eu-repo/semantics/publishedVersio
Application of the rainbow trout derived intestinal cell line (RTgutGC) for ecotoxicological studies: molecular and cellular responses following exposure to copper.
There is an acknowledged need for in vitro fish intestinal model to help understand dietary exposure to chemicals in the aquatic environment. The presence and use of such models is however largely restrictive due to technical difficulties in the culturing of enterocytes in general and the availability of appropriate established cell lines in particular. In this study, the rainbow trout (Oncorhynchus mykiss) intestinal derived cell line (RTgutGC) was used as a surrogate for the "gut sac" method. To facilitate comparison, RTgutGC cells were grown as monolayers (double-seeded) on permeable Transwell supports leading to a two-compartment intestinal model consisting of polarised epithelium. This two-compartment model divides the system into an upper apical (lumen) and a lower basolateral (portal blood) compartment. In our studies, these cells stained weakly for mucosubstances, expressed the tight junction protein ZO-1 in addition to E-cadherin and revealed the presence of polarised epithelium in addition to microvilli protrusions. The cells also revealed a comparable transepithelial electrical resistance (TEER) to the in vivo situation. Importantly, the cell line tolerated apical saline (1:1 ratio) thus mimicking the intact organ to allow assessment of uptake of compounds across the intestine. Following an exposure over 72 h, our study demonstrated that the RTgutGC cell line under sub-lethal concentrations of copper sulphate (Cu) and modified saline solutions demonstrated uptake of the metal with saturation levels comparable to short term ex situ gut sac preparations. Gene expression analysis revealed no significant influence of pH or time on mRNA expression levels of key stress related genes (i.e. CYP3A, GST, mtA, Pgp and SOD) in the Transwell model. However, significant positive correlations were found between all genes investigated suggesting a co-operative relationship amongst the genes studied. When the outlined characteristics of the cell line are combined with the division of compartments, the RTgutGC double seeded model represents a potential animal replacement model for ecotoxicological studies. Overall, this model could be used to study the effects and predict aquatic gastrointestinal permeability of metals and other environmentally relevant contaminants in a cost effective and high throughput manner
- …