4,731 research outputs found

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    New mean field theories for the liquid-vapor transition of charged hard spheres

    Full text link
    The phase behavior of the primitive model of electrolytes is studied in the framework of various mean field approximations obtained recently by means of methods pertaining to statistical field theory (CAILLOL, J.-M., 2004, \textit{J. Stat. Phys.}, \textbf{115}, 1461). The role of the regularization of the Coulomb potential at short distances is discussed in details and the link with more traditional approximations of the theory of liquids is discussed. The values computed for the critical temperatures, chemical potentials, and densities are compared with available Monte Carlo data and other theoretical predictions.Comment: 17 pages, 4 figures, 3 table

    Synchrotron imaging assessment of bone quality

    No full text
    Bone is a complex hierarchical structure and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence analysis of their speciļ¬c roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-Ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen-mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in-vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex-vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in-situ testing in bone research

    Link between New Versions of the Hierarchical Reference Theory of Liquids and of the Non Perturbative Renormalization Group in Statistical Field Theory

    Full text link
    I propose a new version of the Hierarchical Reference Theory of liquids. Two formalisms, one in the grand canonical ensemble, the other in the framework of statistical field theory are given in parallel. In the latter the theory is an avatar of a new version of the non perturbative renormalization group (J. Phys. A : Math. Gen. \textbf{42}, 225004 (2009)). The flow of the Wilsonian action as well as that of the effective average action of Wetterich are derived and a simple relation between the two functionals is established. The standard Hierarchical Reference Theory for liquids (\textit{Adv. Phys.} \textbf{44}, 211 (1995)) is recovered for a sharp infra-red cut-off of the propagato

    Microscopic origin of universality in Casimir forces

    Get PDF
    The microscopic mechanisms for universality of Casimir forces between macroscopic conductors are displayed in a model of classical charged fluids. The model consists of two slabs in empty space at distance dd containing classical charged particles in thermal equilibrium (plasma, electrolyte). A direct computation of the average force per unit surface yields, at large distance, the usual form of the Casimir force in the classical limit (up to a factor 2 due to the fact that the model does not incorporate the magnetic part of the force). Universality originates from perfect screening sum rules obeyed by the microscopic charge correlations in conductors. If one of the slabs is replaced by a macroscopic dielectric medium, the result of Lifshitz theory for the force is retrieved. The techniques used are Mayer expansions and integral equations for charged fluids.Comment: 31 pages, 0 figures, submitted to Journal of Statistical Physic

    UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.

    Get PDF
    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3Ā±25.5%) and LBPP (-37.2Ā±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA

    UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.

    Get PDF
    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3Ā±25.5%) and LBPP (-37.2Ā±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA

    Coordinated and tailored work rehabilitation: a randomized controlled trial with economic evaluation undertaken with workers on sick leave due to musculoskeletal disorders

    Get PDF
    Introduction In Denmark, the magnitude and impact of work disability on the individual worker and society has prompted the development of a new "coordinated and tailored work rehabilitation" (CTWR) approach. The aim of this study was to compare the effects of CTWR with conventional case management (CCM) on return-to-work of workers on sick leave due to musculoskeletal disorders (MSDs). Methods The study was a randomized controlled trial with economic evaluation undertaken with workers on sick leave for 4-12 weeks due to MSDs. CTWR consists of a work disability screening by an interdisciplinary team followed by the collaborative development of a RTW plan. The primary outcome variable was registered cumulative sickness absence hours during 12 months follow-up. Secondary outcomes were work status as well as pain intensity and functional disability, measured at baseline, 3 and 12 months follow-up. The economic evaluation (intervention costs, productivity loss, and health care utilization costs) was based on administrative data derived from national registries. Results For the time intervals 0-6 months, 6-12 months, and the entire follow-up period, the number of sickness absence hours was significantly lower in the CTWR group as compared to the control group. The total costs saved in CTWR participants compared to controls were estimated at US 1,366perpersonat6monthsfollowāˆ’upandUS 1,366 per person at 6 months follow-up and US 10,666 per person at 12 months follow-up. Conclusions Workers on sick leave for 4-12 weeks due to MSD who underwent "CTWR" by an interdisciplinary team had fewer sickness absence hours than controls. The economic evaluation showed that-in terms of productivity loss-CTWR seems to be cost saving for the society

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models
    • ā€¦
    corecore