149 research outputs found

    Climate-Based Models for Understanding and Forecasting Dengue Epidemics

    Get PDF
    Dengue fever is a major public health problem in the tropics and subtropics. Since no vaccine exists, understanding and predicting outbreaks remain of crucial interest. Climate influences the mosquito-vector biology and the viral transmission cycle. Its impact on dengue dynamics is of growing interest. We analyzed the epidemiology of dengue in Noumea (New Caledonia) from 1971 to 2010 and its relationships with local and remote climate conditions using an original approach combining a comparison of epidemic and non epidemic years, bivariate and multivariate analyses. We found that the occurrence of outbreaks in Noumea was strongly influenced by climate during the last forty years. Efficient models were developed to estimate the yearly risk of outbreak as a function of two meteorological variables that were contemporaneous (explicative model) or prior (predictive model) to the outbreak onset. Local threshold values of maximal temperature and relative humidity were identified. Our results provide new insights to understand the link between climate and dengue outbreaks, and have a substantial impact on dengue management in New Caledonia since the health authorities have integrated these models into their decision making process and vector control policies. This raises the possibility to provide similar early warning systems in other countries

    Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali

    Get PDF
    BACKGROUND: Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. METHODOLOGY/PRINCIPAL FINDINGS: In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. CONCLUSIONS/SIGNIFICANCE: The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions, as well as monitoring of disease dynamics modification. Therefore, these forecasts could improve infectious diseases management in the district of Niono, Mali, and elsewhere in the Sahel

    Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda

    Get PDF
    Pregnancy and birth outcomes have been found to be sensitive to meteorological variation, yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates are the highest in the world. We address this research gap by examining the association between meteorological factors and birth weight in a rural population in southwestern Uganda. Our study included hospital birth records (n = 3197) from 2012 to 2015, for which we extracted meteorological exposure data for the three trimesters preceding each birth. We used linear regression, controlling for key covariates, to estimate the timing, strength, and direction of meteorological effects on birth weight. Our results indicated that precipitation during the third trimester had a positive association with birth weight, with more frequent days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0–5.3g) increase in birth weight per additional day of exposure to rainfall over 5mm. Increases in average daily temperature during the third trimester were also associated with birth weight, with an increase of 41.8g (95% CI: 0.6–82.9g) per additional degree Celsius. When the sample was stratified by season of birth, only infants born between June and November experienced a significant associated between meteorological exposures and birth weight. The association of meteorological variation with foetal growth seemed to differ by ethnicity; effect sizes of meteorological were greater among an Indigenous subset of the population, in particular for variation in temperature. Effects in all populations in this study are higher than estimates of the African continental average, highlighting the heterogeneity in the vulnerability of infant health to meteorological variation in different contexts. Our results indicate that while there is an association between meteorological variation and birth weight, the magnitude of these associations may vary across ethnic groups with differential socioeconomic resources, with implications for interventions to reduce these gradients and offset the health impacts predicted under climate change

    CT Scan Screening for Lung Cancer: Risk Factors for Nodules and Malignancy in a High-Risk Urban Cohort

    Get PDF
    Low-dose computed tomography (CT) for lung cancer screening can reduce lung cancer mortality. The National Lung Screening Trial reported a 20% reduction in lung cancer mortality in high-risk smokers. However, CT scanning is extremely sensitive and detects non-calcified nodules (NCNs) in 24-50% of subjects, suggesting an unacceptably high false-positive rate. We hypothesized that by reviewing demographic, clinical and nodule characteristics, we could identify risk factors associated with the presence of nodules on screening CT, and with the probability that a NCN was malignant.We performed a longitudinal lung cancer biomarker discovery trial (NYU LCBC) that included low-dose CT-screening of high-risk individuals over 50 years of age, with more than 20 pack-year smoking histories, living in an urban setting, and with a potential for asbestos exposure. We used case-control studies to identify risk factors associated with the presence of nodules (n=625) versus no nodules (n=557), and lung cancer patients (n=30) versus benign nodules (n=128).The NYU LCBC followed 1182 study subjects prospectively over a 10-year period. We found 52% to have NCNs >4 mm on their baseline screen. Most of the nodules were stable, and 9.7% of solid and 26.2% of sub-solid nodules resolved. We diagnosed 30 lung cancers, 26 stage I. Three patients had synchronous primary lung cancers or multifocal disease. Thus, there were 33 lung cancers: 10 incident, and 23 prevalent. A sub-group of the prevalent group were stable for a prolonged period prior to diagnosis. These were all stage I at diagnosis and 12/13 were adenocarcinomas.NCNs are common among CT-screened high-risk subjects and can often be managed conservatively. Risk factors for malignancy included increasing age, size and number of nodules, reduced FEV1 and FVC, and increased pack-years smoking. A sub-group of screen-detected cancers are slow-growing and may contribute to over-diagnosis and lead-time biases

    Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion.

    Get PDF
    Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions

    Preneoplastic lesions of the lung

    Get PDF
    Lung cancer is the leading cause of cancer deaths worldwide. If we can define and detect preneoplastic lesions, we might have a chance of improving survival. The World Health Organization has defined three preneoplastic lesions of the bronchial epithelium: squamous dysplasia/carcinoma in situ; atypical adenomatous hyperplasia; and diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. These lesions are believed to progress to squamous cell carcinoma, adenocarcinoma and carcinoid tumors, respectively. In this review we summarize the data supporting the preneoplastic nature of these lesions, and delve into some of the genetic changes found in atypical adenomatous hyperplasia and squamous dysplasia/carcinoma in situ

    Climate change impacts on human health over Europe through its effect on air quality

    Get PDF
    Abstract This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH4) abundances lead to increases in background O3 that offset the O3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NOx), elevated surface temperatures and humidities yield increases in surface O3 – termed the O3 climate penalty – especially in southern Europe. The O3 response is larger for metrics that represent the higher end of the O3 distribution, such as daily maximum O3. Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100. A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O3 have been identified. There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O3-related health burdens in polluted populated regions and greater PM2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O3-respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH4 leads to global and European excess O3-respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk

    Parasite spread at the domestic animal - wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals

    Get PDF
    Spillover of parasites at the domestic animal - wildlife interface is a pervasive threat to animal health. Cat and dog fleas (Ctenocephalides felis and C. canis) are among the world's most invasive and economically important ectoparasites. Although both species are presumed to infest a diversity of host species across the globe, knowledge on their distributions in wildlife is poor. We built a global dataset of wild mammal host associations for cat and dog fleas, and used Bayesian hierarchical models to identify traits that predict wildlife infestation probability. We complemented this by calculating functional-phylogenetic host specificity to assess whether fleas are restricted to hosts with similar evolutionary histories, diet or habitat niches.Over 130 wildlife species have been found to harbour cat fleas, representing nearly 20% of all mammal species sampled for fleas. Phylogenetic models indicate cat fleas are capable of infesting a broad diversity of wild mammal species through ecological fitting. Those that use anthropogenic habitats are at highest risk. Dog fleas, by contrast, have been recorded in 31 mammal species that are primarily restricted to certain phylogenetic clades, including canids, felids and murids. Both flea species are commonly reported infesting mammals that are feral (free-roaming cats and dogs) or introduced (red foxes, black rats and brown rats), suggesting the breakdown of barriers between wildlife and invasive reservoir species will increase spillover at the domestic animal - wildlife interface.Our empirical evidence shows that cat fleas are incredibly host-generalist, likely exhibiting a host range that is among the broadest of all ectoparasites. Reducing wild species' contact rates with domestic animals across natural and anthropogenic habitats, together with mitigating impacts of invasive reservoir hosts, will be crucial for reducing invasive flea infestations in wild mammals

    Changing trends in mastitis

    Get PDF
    <p>Abstract</p> <p>The global dairy industry, the predominant pathogens causing mastitis, our understanding of mastitis pathogens and the host response to intramammary infection are changing rapidly. This paper aims to discuss changes in each of these aspects. Globalisation, energy demands, human population growth and climate change all affect the dairy industry. In many western countries, control programs for contagious mastitis have been in place for decades, resulting in a decrease in occurrence of <it>Streptococcus agalactiae </it>and <it>Staphylococcus aureus </it>mastitis and an increase in the relative impact of <it>Streptococcus uberis </it>and <it>Escherichia coli </it>mastitis. In some countries, <it>Klebsiella </it>spp. or <it>Streptococcus dysgalactiae </it>are appearing as important causes of mastitis. Differences between countries in legislation, veterinary and laboratory services and farmers' management practices affect the distribution and impact of mastitis pathogens. For pathogens that have traditionally been categorised as contagious, strain adaptation to human and bovine hosts has been recognised. For pathogens that are often categorised as environmental, strains causing transient and chronic infections are distinguished. The genetic basis underlying host adaptation and mechanisms of infection is being unravelled. Genomic information on pathogens and their hosts and improved knowledge of the host's innate and acquired immune responses to intramammary infections provide opportunities to expand our understanding of bovine mastitis. These developments will undoubtedly contribute to novel approaches to mastitis diagnostics and control.</p
    corecore