559 research outputs found

    Automated Mail Stacker

    Get PDF

    The filamentary structures in the CO emission toward the Milky Way disk

    Get PDF
    We present a statistical study of the filamentary structure orientation in the CO emission observations obtained in the Milky Way Imaging Scroll Painting survey in the range 25 (.)degrees . degrees 8 < l < 49 (.)degrees . degrees 7, |b| <= 1 (.)degrees degrees 25, and -100 < v(LSR) < 135 km s(-1). We found that most of the filamentary structures in the (CO)-C-12 and (CO)-C-13 emission do not show a global preferential orientation either parallel or perpendicular to the Galactic plane. However, we found ranges in Galactic longitude and radial velocity where the (CO)-C-12 and (CO)-C-13 filamentary structures are parallel to the Galactic plane. These preferential orientations are different from those found for the HI emission. We consider this an indication that the molecular structures do not simply inherit these properties from parental atomic clouds. Instead, they are shaped by local physical conditions, such as stellar feedback, magnetic fields, and Galactic spiral shocks

    A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant

    Get PDF
    Using the 3.5-m Herschel Space Observatory, imaging photometry of Cas A has been obtained in six bands between 70 and 500 μm with the PACS and SPIRE instruments, with angular resolutions ranging from 6 to 37”. In the outer regions of the remnant the 70-μm PACS image resembles the 24-μm image Spitzer image, with the emission attributed to the same warm dust component, located in the reverse shock region. At longer wavelengths, the three SPIRE bands are increasingly dominated by emission from cold interstellar dust knots and filaments, particularly across the central, western and southern parts of the remnant. Nonthermal emission from the northern part of the remnant becomes prominent at 500 μm. We have estimated and subtracted the contributions from the nonthermal, warm dust and cold interstellar dust components. We confirm and resolve for the first time a cool (~35 K) dust component, emitting at 70-160 μm, that is located interior to the reverse shock region, with an estimated mass of 0.075

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Localization and Characterization of STRO-1+ Cells in the Deer Pedicle and Regenerating Antler

    Get PDF
    The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments, may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1+ cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our results support the view that the annual process of antler regeneration might depend on the periodic activation of mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-based process

    The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way

    Get PDF
    We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40 '' and 1.5-km s(-1) resolution position-position-velocity cube, resulting from the combination of the single-dish and interferometric observations in The HI/OH/recombination-line survey of the inner Milky Way. Using the Hessian matrix method in combination with tools from circular statistics, we find that the majority of the filamentary structures in the HI emission are aligned with the Galactic plane. Part of this trend can be assigned to long filamentary structures that are coherent across several velocity channels. However, we also find ranges of Galactic longitude and radial velocity where the HI filamentary structures are preferentially oriented perpendicular to the Galactic plane. These are located (i) around the tangent point of the Scutum spiral arm and the terminal velocities of the Molecular Ring, around l approximate to 28 degrees and v(LSR) approximate to 100 km s(-1), (ii) toward l approximate to 45 degrees and v(LSR) approximate to 50 km s(-1), (iii) around the Riegel-Crutcher cloud, and (iv) toward the positive and negative terminal velocities. A comparison with numerical simulations indicates that the prevalence of horizontal filamentary structures is most likely the result of large-scale Galactic dynamics and that vertical structures identified in (i) and (ii) may arise from the combined effect of supernova (SN) feedback and strong magnetic fields. The vertical filamentary structures in (iv) can be related to the presence of clouds from extra-planar HI gas falling back into the Galactic plane after being expelled by SNe. Our results indicate that a systematic characterization of the emission morphology toward the Galactic plane provides an unexplored link between the observations and the dynamical behavior of the interstellar medium, from the effect of large-scale Galactic dynamics to the Galactic fountains driven by SNe

    Cloud formation in the atomic and molecular phase: HI self absorption (HISA) towards a Giant Molecular Filament

    Get PDF
    Molecular clouds form from the atomic phase of the interstellar medium. However, characterizing the transition between the atomic and the molecular interstellar medium (ISM) is a difficult observational task. Here we address cloud formation processes by combining HSIA with molecular line data. One scenario proposed by numerical simulations is that the column density probability density functions (N-PDF) evolves from a log-normal shape at early times to a power-law-like shape at later times. In this paper, we study the cold atomic component of the giant molecular filament GMF38a (d=3.4 kpc, length230\sim230 pc). We identify an extended HISA feature, which is partly correlated with the 13CO emission. The peak velocities of the HISA and 13CO observations agree well on the eastern side of the filament, whereas a velocity offset of approximately 4 km s1^{-1} is found on the western side. The sonic Mach number we derive from the linewidth measurements shows that a large fraction of the HISA, which is ascribed to the cold neutral medium (CNM), is at subsonic and transonic velocities. The column density of the CNM is on the order of 1020^{20} to 1021^{21} cm2^{-2}. The column density of molecular hydrogen is an order of magnitude higher. The N-PDFs from HISA (CNM), HI emission (WNM+CNM), and 13CO (molecular component) are well described by log-normal functions, which is in agreement with turbulent motions being the main driver of cloud dynamics. The N-PDF of the molecular component also shows a power law in the high column-density region, indicating self-gravity. We suggest that we are witnessing two different evolutionary stages within the filament. The eastern subregion seems to be forming a molecular cloud out of the atomic gas, whereas the western subregion already shows high column density peaks, active star formation and evidence of related feedback processes

    A participatory physical and psychosocial intervention for balancing the demands and resources among industrial workers (PIPPI): study protocol of a cluster-randomized controlled trial

    Get PDF
    Background: Need for recovery and work ability are strongly associated with high employee turnover, well-being and sickness absence. However, scientific knowledge on effective interventions to improve work ability and decrease need for recovery is scarce. Thus, the present study aims to describe the background, design and protocol of a cluster randomized controlled trial evaluating the effectiveness of an intervention to reduce need for recovery and improve work ability among industrial workers. Methods/Design: A two-year cluster randomized controlled design will be utilized, in which controls will also receive the intervention in year two. More than 400 workers from three companies in Denmark will be aimed to be cluster randomized into intervention and control groups with at least 200 workers (at least 9 work teams) in each group. An organizational resources audit and subsequent action planning workshop will be carried out to map the existing resources and act upon initiatives not functioning as intended. Workshops will be conducted to train leaders and health and safety representatives in supporting and facilitating the intervention activities. Group and individual level participatory visual mapping sessions will be carried out allowing team members to discuss current physical and psychosocial work demands and resources, and develop action plans to minimize strain and if possible, optimize the resources. At all levels, the intervention will be integrated into the existing organization of work schedules. An extensive process and effect evaluation on need for recovery and work ability will be carried out via questionnaires, observations, interviews and organizational data assessed at several time points throughout the intervention period. Discussion: This study primarily aims to develop, implement and evaluate an intervention based on the abovementioned features which may improve the work environment, available resources and health of industrial workers, and hence their need for recovery and work ability
    corecore