101 research outputs found

    Pazopanib for the Treatment of Patients with Advanced Renal Cell Carcinoma

    Get PDF
    Dramatic advances in the care of patients with advanced renal cell carcinoma have occurred over the last ten years, including insights into the molecular pathogenesis of this disease, that have now been translated into paradigm-changing therapeutic strategies. Elucidating the importance of signaling cascades related to angiogenesis is notable among these achievements. Pazopanib is a novel small molecule tyrosine kinase inhibitor that targets VEGFR-1, -2, and -3; PDGFR-α, PDGFR-β; and c-kit tyrosine kinases. This agent exhibits a distinct pharmacokinetic profile as well as toxicity profile compared to other agents in the class of VEGF signaling pathway inhibitors. This review will discuss the scientific rationale for the development of pazopanib, as well as preclinical and clinical trials that led to approval of pazopanib for patients with advanced renal cell carcinoma. The most recent information, including data from 2010 national meeting of the American Society of Clinical Oncology, and the design of ongoing Phase III trials, will be discussed. Finally, an algorithm utilizing Level I evidence for the treatment of patients with this disease will be proposed

    The multiphase gas structure and kinematics in the circumnuclear region of NGC 5728

    Get PDF
    We report on our combined analysis of HST, VLT/MUSE, VLT/SINFONI, and ALMA observations of the local Seyfert 2 galaxy, NGC 5728 to investigate in detail the feeding and feedback of the active galactic nucleus (AGN). The data sets simultaneously probe the morphology, excitation, and kinematics of the stars, ionized gas, and molecular gas over a large range of spatial scales (10 pc to 10 kpc). NGC 5728 contains a large stellar bar that is driving gas along prominent dust lanes to the inner 1 kpc where the gas settles into a circumnuclear ring. The ring is strongly star forming and contains a substantial population of young stars as indicated by the lowered stellar velocity dispersion and gas excitation consistent with H II regions. We model the kinematics of the ring using the velocity field of the CO (2–1) emission and stars and find it is consistent with a rotating disc. The outer regions of the disc, where the dust lanes meet the ring, show signatures of inflow at a rate of 1 M⊙ yr−1. Inside the ring, we observe three molecular gas components corresponding to the circular rotation of the outer ring, a warped disc, and the nuclear stellar bar. The AGN is driving an ionized gas outflow that reaches a radius of 250 pc with a mass outflow rate of 0.08 M⊙ yr−1 consistent with its luminosity and scaling relations from previous studies. While we observe distinct holes in CO emission which could be signs of molecular gas removal, we find that largely the AGN is not disrupting the structure of the circumnuclear region

    FORT-1: Phase II/III Study of Rogaratinib Versus Chemotherapy in Patients With Locally Advanced or Metastatic Urothelial Carcinoma Selected Based on FGFR1/3 mRNA Expression

    Full text link
    Purpose: Rogaratinib, an oral pan-fibroblast growth factor receptor (FGFR1-4) inhibitor, showed promising phase I efficacy and safety in patients with advanced urothelial carcinoma (UC) with FGFR1-3 mRNA overexpression. We assessed rogaratinib efficacy and safety versus chemotherapy in patients with FGFR mRNA-positive advanced/metastatic UC previously treated with platinum chemotherapy. Methods: FORT-1 (ClinicalTrials.gov identifier: NCT03410693) was a phase II/III, randomized, open-label trial. Patients with FGFR1/3 mRNA-positive locally advanced or metastatic UC with ≥ 1 prior platinum-containing regimen were randomly assigned (1:1) to rogaratinib (800 mg orally twice daily, 3-week cycles; n = 87) or chemotherapy (docetaxel 75 mg/m2, paclitaxel 175 mg/m2, or vinflunine 320 mg/m2 intravenously once every 3 weeks; n = 88). The primary end point was overall survival, with objective response rate (ORR) analysis planned following phase II accrual. Because of comparable efficacy between treatments, enrollment was stopped before progression to phase III; a full interim analysis of phase II was completed. Results: ORRs were 20.7% (rogaratinib, 18/87; 95% CI, 12.7 to 30.7) and 19.3% (chemotherapy, 17/88; 95% CI, 11.7 to 29.1). Median overall survival was 8.3 months (95% CI, 6.5 to not estimable) and 9.8 months (95% CI, 6.8 to not estimable; hazard ratio, 1.11; 95% CI, 0.71 to 1.72; P = .67). Grade 3/4 events occurred in 37 (43.0%)/4 (4.7%) patients and 32 (39.0%)/15 (18.3%), respectively. No rogaratinib-related deaths occurred. Exploratory analysis of patients with FGFR3 DNA alterations showed ORRs of 52.4% (11/21; 95% CI, 29.8 to 74.3) for rogaratinib and 26.7% (4/15; 95% CI, 7.8 to 55.1) for chemotherapy. Conclusion: To our knowledge, these are the first data to compare FGFR-directed therapy with chemotherapy in patients with FGFR-altered UC, showing comparable efficacy and manageable safety. Exploratory testing suggested FGFR3 DNA alterations in association with FGFR1/3 mRNA overexpression may be better predictors of rogaratinib response

    In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence

    Get PDF
    While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the ‘bag of worms’ phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production

    Challenges and opportunities for converting renal cell carcinoma into a chronic disease with targeted therapies

    Get PDF
    Optimum efficacy is the primary goal for any cancer therapy, and entails controlling tumour growth and prolonging survival as far as possible. The prognosis for patients with metastatic renal cell carcinoma (mRCC) has greatly improved with the introduction of targeted therapies. This review examines the development and efficacy of targeted agents for the management of mRCC, the challenges offered by their rapid emergence, and discusses how mRCC treatment may evolve in the future. Improvements in progression-free survival and overall survival rates, observed with targeted agents, indicate that it may now be possible to change mRCC from a rapidly fatal and largely untreatable condition into a chronic disease. The major challenges to further advances in targeted therapy for mRCC include overcoming drug resistance, identifying the most effective sequence or combination of targeted agents, optimising clinical trial design and managing the cost of treatment

    Neonatal presentation of ventricular tachycardia and a Reye-like syndrome episode associated with disturbed mitochondrial energy metabolism

    Get PDF
    BACKGROUND: Hyperammonemia, hypoglycemia, hepatopathy, and ventricular tachycardia are common presenting features of carnitine-acylcarnitine translocase deficiency (Mendelian Inheritance in Man database: *212138), a mitochondrial fatty acid oxidation disorder with a lethal prognosis. These features have not been identified as the presenting features of mitochondrial cytopathy in the neonatal period. CASE PRESENTATION: We describe an atypical presentation of mitochondrial cytopathy in a 2 day-old neonate. She presented with a Reye-like syndrome episode, premature ventricular contractions and ventricular tachycardia. Initial laboratory evaluation exhibited a large amount of 3-methylglutaconic acid on urine organic acid analysis, mild orotic aciduria and a nonspecific abnormal acylcarnitine profile. The evaluation for carnitine-acylcarnitine translocase deficiency and other fatty acid oxidation disorders was negative. The patient later developed a hypertrophic cardiomyopathy and continued to be affected by recurrent Reye-like syndrome episodes triggered by infections. A muscle biopsy exhibited signs of a mitochondrial cytopathy. During the course of her disease, her Reye-like syndrome episodes have subsided; however, cardiomyopathy has persisted along with fatigue and exercise intolerance. CONCLUSIONS: This case illustrates that, in the neonatal period, hyperammonemia and ventricular tachycardia may be the presenting features of a lethal carnitine-acylcarnitine translocase deficiency or of a mitochondrial cytopathy, associated with a milder clinical course. This association broadens the spectrum of presenting phenotypes observed in patients with disturbed mitochondrial energy metabolism. Also, the presence of 3-methylglutaconic aciduria suggests mitochondrial dysfunction and mild orotic aciduria could potentially be used as a marker of mitochondrial disease

    Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-Induced Suppression of Cytokine Production

    Get PDF
    BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin

    Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pneumocystis spp</it>. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. <it>Pneumocystis </it>colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to <it>Pneumocystis</it>.</p> <p>Methods</p> <p>To analyze the role of SP-A in protecting the immunocompetent host from <it>Pneumocystis </it>colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to <it>P. murina </it>colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA).</p> <p>Results</p> <p>Detection of <it>P. murina </it>specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to <it>P. murina </it>within the animal facility. However, P. <it>murina </it>mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, <it>P. murina </it>cyst forms were also only detected in KO mice. <it>P. murina </it>mRNA was detected in <it>SCID </it>mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared.</p> <p>Conclusion</p> <p>These data support an important role for SP-A in protecting the immunocompetent host from <it>P. murina </it>colonization, and provide a model to study <it>Pneumocystis </it>colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to <it>P. murina </it>even when housed under barrier conditions.</p

    Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886)

    Get PDF
    In 1886 Pierre Marie used the term “acromegaly” for the first time and gave a full description of the characteristic clinical picture. However several others had already given clear clinical descriptions before him and sometimes had given the disease other names. After 1886, it gradually became clear that pituitary enlargement (caused by a pituitary adenoma) was the cause and not the consequence of acromegaly, as initially thought. Pituitary adenomas could be found in the great majority of cases. It also became clear that acromegaly and gigantism were the same disease but occurring at different stages of life and not different diseases as initially thought. At the end of the 19th and beginning of the 20th century most information was derived from case descriptions and post-mortem examinations of patients with acromegaly or (famous) patients with gigantism. The stage was set for further research into the pathogenesis, diagnosis and therapy of acromegaly and gigantism
    corecore