883 research outputs found

    ADAM8 in squamous cell carcinoma of the head and neck: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A disintegrin and metalloproteinase (ADAMs) have been associated with multiple malignancies. ADAMs are involved in cell fusion, cell migration, membrane protein shedding and proteolysis. ADAM8 has been found to be overexpressed in squamous cell carcinomas of the lung. A new study showed that ADAM8 is significantly overexpressed in metastasis of squamous cell carcinomas of the head and neck (HNSCC).</p> <p>Methods</p> <p>We determined ADAM8 levels in the serum of 79 HNSCC patients at the time of diagnosis, in 35 patients 3 months after treatment and in 10 patients 1 year after therapy and compared the results to the sera of 31 healthy volunteers. We also constructed tissue microarrays to detect ADAM8 immunohistochemically in 100 patients. The results were correlated with the survival data of the patients to determine the diagnostic and prognostic value.</p> <p>Results</p> <p>The data demonstrated that patients with high ADAM8 expression in the tumor have worse survival rates. We found that high ADAM8 serum levels correlated with high ADAM8 expression in tumor samples. Soluble ADAM8 levels did not show any prognostic or diagnostic properties.</p> <p>Conclusion</p> <p>In summary ADAM8 expression is a prognostic factor for survival of patients with head and neck squamous cell carcinoma.</p

    A genome-wide test of the differential susceptibility hypothesis reveals a genetic predictor of differential response to psychological treatments for child anxiety Disorders

    Get PDF
    Background: The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. Methods: We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results: The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). Conclusions: Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment

    Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets

    Full text link
    Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit timing variations (TTV) and transit duration variations (TDV) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own Solar System. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.Comment: Revised version. Invited review submitted to 'Handbook of Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at https://github.com/ericagol/TTV_revie

    Predicting Protein Kinase Specificity: Predikin Update and Performance in the DREAM4 Challenge

    Get PDF
    Predikin is a system for making predictions about protein kinase specificity. It was declared the “best performer” in the protein kinase section of the Peptide Recognition Domain specificity prediction category of the recent DREAM4 challenge (an independent test using unpublished data). In this article we discuss some recent improvements to the Predikin web server — including a more streamlined approach to substrate-to-kinase predictions and whole-proteome predictions — and give an analysis of Predikin's performance in the DREAM4 challenge. We also evaluate these improvements using a data set of yeast kinases that have been experimentally characterised, and we discuss the usefulness of Frobenius distance in assessing the predictive power of position weight matrices

    Increased risk of cancer among relatives of patients with lung cancer in China

    Get PDF
    BACKGROUND: Genetic factors were considered as one of the risk factors for lung cancer or other cancers. The aim of this work was to determine whether a genetic predisposition accounts for such familial aggregation of cancer among relatives of lung cancer probands. METHODS: A case-control study was conducted in 800 case families identified by lung cancer patients (probands), and in 800 control families identified by the probands'spouses. The data were analysed with logistic regression analysis model. RESULTS: The data revealed a significantly greater overall risk of cancer (OR = 1.82, P < 0.01) in the proband group. The relatives of lung cancer probands maintained an increased risk of non-lung cancer (P < 0.05) after adjusting for confounder factors. The crude odds ratio of a proband family having one family member with cancer was 1.67 compared with control families. Proband families were 2.56 times more likely to have two other family members with cancer. For three cancers and four or more cancers, the risk increased to 3.50 and 5.91, respectively. The most striking differences in cancer prevalence between proband and control families were noted for cancer risk among female relatives. The strongest effects were for not only lung cancer in any female relatives (OR 2.17, 95%CI 1.60–3.64) and mothers (OR 2.78, 95%CI 1.23–5.12) and sisters (OR 2.03, 95%CI 1.26–3.97), but also non-lung cancer in females and mothers (OR 2.00, 95%CI 1.26–3.01, and OR 2.34, 95%CI 1.28–4.40, respectively). CONCLUSION: These data support the hypothesis of a genetic susceptibility to cancer in families with lung cancer, and the female genetic susceptibility to cancer might be greater than male

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
    corecore