122 research outputs found

    Risk Assessment of Gastric Cancer Caused by Helicobacter pylori Using CagA Sequence Markers

    Get PDF
    As a marker of Helicobacter pylori, Cytotoxin-associated gene A (cagA) has been revealed to be the major virulence factor causing gastroduodenal diseases. However, the molecular mechanisms that underlie the development of different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are limited to the evaluation of the correlation between diseases and the number of Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in the CagA strain. To further understand the relationship between CagA sequence and its virulence to gastric cancer, we proposed a systematic entropy-based approach to identify the cancer-related residues in the intervening regions of CagA and employed a supervised machine learning method for cancer and non-cancer cases classification.An entropy-based calculation was used to detect key residues of CagA intervening sequences as the gastric cancer biomarker. For each residue, both combinatorial entropy and background entropy were calculated, and the entropy difference was used as the criterion for feature residue selection. The feature values were then fed into Support Vector Machines (SVM) with the Radial Basis Function (RBF) kernel, and two parameters were tuned to obtain the optimal F value by using grid search. Two other popular sequence classification methods, the BLAST and HMMER, were also applied to the same data for comparison.Our method achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively, which performed significantly better than BLAST and HMMER. This research indicates that small variations of amino acids in those important residues might lead to the virulence variance of CagA strains resulting in different gastroduodenal diseases. This study provides not only a useful tool to predict the correlation between the novel CagA strain and diseases, but also a general new framework for detecting biological sequence biomarkers in population studies

    A Comprehensive Sequence and Disease Correlation Analyses for the C-Terminal Region of CagA Protein of Helicobacter pylori

    Get PDF
    Chronic Helicobacter pylori infection is known to be associated with the development of peptic ulcer, gastric cancer and gastric lymphoma. Currently, the bacterial factors of H. pylori are reported to be important in the development of gastroduodenal diseases. CagA protein, encoded by the cagA, is the best studied virulence factor of H. pylori. The pathogenic CagA protein contains a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal. This repeat region is reported to be involved in the pathogenesis of gastroduodenal diseases. The segments containing EPIYA motifs have been designated as segments A, B, C, and D; however the classification and disease relation are still unclear. This study used 560 unique CagA sequences containing 1,796 EPIYA motifs collected from public resources, including 274 Western and 286 East Asian strains with clinical data obtained from 433 entries. Fifteen types of EPIYA or EPIYA-like sequences are defined. In addition to four previously reported major segment types, several minor segment types (e.g., segment B′, B′′) and more than 30 sequence types (e.g., ABC, ABD) were defined using our classification method. We confirm that the sequences from Western and East Asian strains contain segment C and D, respectively. We also confirm that strains with two EPIYA segment C have a greater chance of developing gastric cancer than those with one segment C. Our results shed light on the relationships between the types of CagAs, the country of origin of each sequence type, and the frequency of gastric disease

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF
    Emergency repair of complicated abdominal wall hernias may be associated with worsen outcome and a significant rate of postoperative complications. There is no consensus on management of complicated abdominal hernias. The main matter of debate is about the use of mesh in case of intestinal resection and the type of mesh to be used. Wound infection is the most common complication encountered and represents an immense burden especially in the presence of a mesh. The recurrence rate is an important topic that influences the final outcome. A World Society of Emergency Surgery (WSES) Consensus Conference was held in Bergamo in July 2013 with the aim to define recommendations for emergency repair of abdominal wall hernias in adults. This document represents the executive summary of the consensus conference approved by a WSES expert panel. In 2016, the guidelines have been revised and updated according to the most recent available literature.Peer reviewe

    Microbial carcinogenic toxins and dietary anti-cancer protectants

    Get PDF

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    2017 update of the WSES guidelines for emergency repair of complicated abdominal wall hernias

    Get PDF
    • …
    corecore