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    Abstract     The gut microbiome plays a crucial role in host physiology. Disruption 
of its community structure and function can have wide-ranging effects making it 
critical to understand exactly how the interactive dialogue between the host and its 
microbiota is regulated to maintain homeostasis. An array of multidirectional 
signalling molecules is clearly involved in the host-microbiome communication. 
This interactive signalling not only impacts the gastrointestinal tract, where the 
majority of microbiota resides, but also extends to affect other host systems includ-
ing the brain and liver as well as the microbiome itself. Understanding the mecha-
nistic principles of this inter-kingdom signalling is fundamental to unravelling how 
our supraorganism function to maintain wellbeing, subsequently opening up new 
avenues for microbiome manipulation to favour desirable mental health outcome.  

  Keywords     Microbiota   •   Gut-brain axis   •   Immune system   •   Metabolites   •   Epigenetics  

mailto:j.cryan@ucc.ie


302

15.1         Introduction 

 In the last decade, studies on the human microbiome have attracted tremendous 
attention in an effort to understand the relationships between the host systems and 
aspects of the host microbiome that can point to novel mechanisms underlying host 
regulation of the microbiome. The human intestine harbours the majority of the vast 
and diverse body’s microbes that has co-evolved with its host and is essential for 
human health (Gordon  2012 ). The two major research consortia, the American 
Human Microbiome Project (  http://commonfund.nih.gov/hmp    ) and the European 
MetaHIT project (  http://www.metahit.eu    ) have both unravelled a great deal of 
knowledge related to intestinal bacterial communities in humans (Human 
Microbiome Project Consortium  2012 ; Arumugam et al.  2011 ; Qin et al.  2010 ; 
Nielsen et al.  2014 ). Both take advantage of next generation sequencing to reveal 
the large variability in microbiota profi les between individuals. 

 The gut microbiota has coevolved with the human host to perform a number of 
benefi cial functions by protecting against pathogens, ferment indigestible nutrients, 
produce micronutrients, and metabolize drugs and harmful toxins (Tremaroli and 
Backhed  2012 ; Nicholson et al.  2012 ). However, it has become increasingly appre-
ciated that the role of the gut microbiota extends beyond the gastrointestinal (GI) 
tract to help balance host vital functions and participate in maintenance of health 
and wellbeing (Lyte and Cryan  2014 ; Blaser  2014 ). The human microbiome is also 
thought to play a key role in evolution; the concept of hologenome theory, which 
proposes that the holobiont is “a long-term physical association between different 
living organisms” (Lynn  1991 ). It has furthermore been suggested that the holobiont 
is a unit that can undergo natural selection (Brucker and Bordenstein  2013 ). The 
host selects for certain microbiota that are capable of establishing a symbiotic rela-
tion with the host environment as well as with other microbial members of the gut 
ecosystem (Arumugam et al.  2011 ). In fact, the intimate host-microbiome interac-
tions postulate that any changes within the host are associated with changes in its 
microbial genome (Gilbert et al.  2010 ). In turn, the unit of genome selection 
becomes no longer the host’s but it’s hologenome, i.e. the genome of both the host 
and microbiome (Sharon et al.  2010 ).  

15.2     The Microbiome: Our Other Selves 

 In recent years, the complex and dynamic intestinal microbiota has attracted great 
interest, ranging from being simple fermenters of food to having profound effects 
on human physiology, nutrition, immunity and even mood and behaviour (Blaser 
 2014 ; De Vos and De Vos  2012 ; Cryan and Dinan  2012 ; Surana and Kasper  2014 ). 
Consequently, disruption in or alterations of the intimate cross-talk between the 
microbes and human cells may be a signifi cant factor in many diseases such as obe-
sity, type 2 diabetes, gastrointestinal disorders, stress and major depression 
(Nicholson et al.  2012 ; Cryan and Dinan  2012 ). The human gastrointestinal (GI) 
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tract is estimated to harbour around a thousand billion bacteria, which corresponds 
to 10–100 times more than the number of the human body cells (De Vos and 
Nieuwdorp  2013 ). The diversity of the gut microbes is substantial, estimated to be 
around a 1000 different bacterial species, despite the relatively low phylum-level 
diversity, which is dominated by the phyla of the Bacteroidetes, Firmicutes with 
Proteobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia phyla present in 
lower abundance (Eckburg et al.  2005 ; Qin et al.  2010 ). Moreover, the community 
structure of these different species is highly dynamic and can vary markedly between 
individuals, from 10- to 1000-fold (Qin et al.  2010 ). Yet it is obscure whether this 
variation is driven by the differences between individuals in genetic backgrounds, 
or by different diets and other environmental infl uences. 

 Humans live in constant association with microbes that are present on surfaces 
and in cavities of the human body, and even within the cells, thereby a detailed 
understanding of human biology requires knowledge of both human genome as well 
as human microbial metagenome (Baltimore et al.  2008 ). Understanding our other 
genome will open new avenues to shape the gut microbiome in a way that is thera-
peutically benefi cial for individuals whose gut microbiome is unbalanced. Unlike 
the mammalian core genome, which is relatively constant, microbial metagenomes 
are surprisingly plastic (Patterson and Turnbaugh  2014 ). 

 Being anaerobes and inhabiting a milieu that is diffi cult to characterize and 
reproduce  in vitro , the majority of the gut microbiota cannot be cultured in the labo-
ratory. Consequently, it was impossible to assign genes to un-cultivable bacteria 
because the metagenomic analysis was based on comparing the genes detected in a 
sample with those of genes from bacteria that could be cultivated in a laboratory, 
which represent only around 15 % of the gut bacteria (Wood  2011 ). In the past few 
years, advances in rapid and inexpensive sequencing technology have made it pos-
sible to sequence and assemble the complete genomes of 238 gut bacteria, the 
majority of which were previously unknown (Qin et al.  2010 ). In another study, data 
from nearly 400 human gut microbiome samples shed light on microbial communi-
ties in humans by clustering millions of genes into a few thousand co-abundance 
groups of genes (Nielsen et al.  2014 ). Approximately 10 % of these groups of genes 
corresponded to bacterial species referred to as metagenomic species, 85 % of 
which represented unknown bacteria species. The other minor groups corresponded 
to bacterial viruses, along with bacteriophages, plasmids or CRISPR sequences, 
which protect bacteria from viral attack. 

 There are growing attempts to characterize microbial communities in various 
sites of the human body, including the GI tract, into ‘enterotypes’, that similar to 
blood groups identify the individual as host to a specifi c composition of intestinal 
bacteria (Siezen and Kleerebezem  2011 ). Indeed, the METAHIT project led to the 
suggestion of clustering humans into three separate enterotypes based on the com-
position of their gut bacterial communities but independent of geography, short- 
term diet or skin colour (Arumugam et al.  2011 ). The identifi ed enterotypes were 
characterised by the predominant bacterial population: Bacteroides, Prevotella and 
Ruminococcus. However, linking specifi c dietary habits to microbial enterotypes 
has been a heuristically attractive discovery (Wu et al.  2011 ), which is in line with 
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fi nding highlights the signifi cance of the diet in determining the community structure 
of the health-shaping microbiome. Although the concept of classifying the intestinal 
microbiome into “enterotypes” provides an attractive way to understand microbial 
variation in health and disease, it is somewhat simplistic, has been challenged 
conceptually and there is emerging evidence against discrete types of microbiome 
urging the need for appropriate statistical description of the microbiome (Knights 
et al.  2014 ). 

15.2.1     We Are What Our Microbiomes Eat 

 Emerging studies demonstrate that the make-up of the microbiome is related to the 
expanding repertoire of diseases associated with modern living (Patterson and 
Turnbaugh  2014 ). For example, some individuals develop metabolic disorders and 
are more susceptible to the ‘obesogenic’ environment than others. The reports sug-
gest an important inherited component, as concluded from several twin- family- and 
adoption studies, yet the proportion of explained genetic variance of body mass 
index remains low. Nonetheless, emerging evidence suggests that variation in the 
microbiome may have an even greater role than human genome variation in the 
pathogenesis of obesity. Turnbaugh and colleagues showed that the differences 
observed in obese and lean mouse microbiotas were conserved in obese people and 
could be infl uenced by caloric restriction (Turnbaugh et al.  2006 ). However, other 
studies could not directly confi rm these initial fi ndings and suggested that obesity 
may be associated with more subtle changes in the microbiota composition 
(Schwiertz et al.  2010 ; Zhang et al.  2009 ; Duncan et al.  2009 ). In addition, some 
studies have related the changes observed in the microbial composition of obese 
patients to high fat, high-energy diet (Daniel et al.  2014 ; Cani  2013 ). Dietary pertur-
bations, for example, can exert strong effects on the gut microbiota in few days-time 
as reported in a study on ten human individuals, who were fed a vegan or animal- 
based diet and their gut microbes were rapidly and reproducibly altered in response 
(David et al.  2014 ). 

 Despite the accumulating data from laboratory animals, the question remains 
unanswered is whether the changes in the microbial composition are a direct effect 
from altered nutrient availability in the GI tract or are consequences of the effect of 
altered diets on host physiology that are consistent across genotypes. A human study 
examined the metagenome in the stool of nearly 300 lean and obese Danish volun-
teers, as well as markers of metabolic health (Le Chatelier et al.  2013 ). The study 
showed that having a relatively low genetic diversity in an individual’s microbiome 
correlated with higher infl ammation, greater insulin resistance and other warning 
signs of metabolic diseases. Obese participants who had low diversity also gained 
signifi cantly more weight over the course of 9 years. Another study conducted in 
obese volunteers, who were put on a low-caloric diet, demonstrated an increase in the 
genetic diversity of the microbiome and improved metabolic markers in those who 
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had low diversity in their microbiomes at the start of the intervention. In contrast, 
people who already had high diversity didn’t show much improvement compared to 
the former group, suggesting that a low-diversity microbiome, though linked to 
worse metabolic health, can be subject to dietary intervention (Cotillard et al.  2013 ). 

 Another important aspect is the central regulation of obesity and food intake, in 
general (Morton et al.  2006 ). Gut microbiota appear to infl uence the peripheral con-
trol of food intake and obesity but whether it also has an impact on the central regu-
lation remains obscure. Such studies are now warranted, especially given the rapidly 
expanding obesity epidemic. Notably, a common side effect of centrally acting psy-
chotropic drugs is obesity, and we have shown that the gut microbiota mediate at 
least in part these effects based on the fi nding that gut microbiota composition was 
altered following treatment with olanzapine in rats (Davey et al.  2013 ).   

15.3     Epigenetics and the Neonatal Microbiome: 
Journey Not Destination Matters 

 The neonatal microbiota colonizes at birth, although evidence is beginning to 
emerge that the in utero environment may not be sterile as initially believed 
(Funkhouser and Bordenstein  2013 ) since bacteria such as  Escherichia coli , 
 Enterococcus fecalis , and  Staphylococcus epidermidis  were detected in the meco-
nium of healthy neonates (Jimenez et al.  2008 ). The microbial community of the 
new-born gut is initially undifferentiated throughout the GI tract, more dynamic in 
its composition and less stable over time (Nylund et al.  2014 ). Particularly, in the 
fi rst year of life, the GI tract progresses from sterility to enormously dense coloniza-
tion, characterized by a mixture of microbes that is relatively stable and largely 
similar to that found in the adult intestine (Palmer et al.  2007 ; Nylund et al.  2014 ). 
A range of factors, including pre- and postnatal as well as birth factors, is involved 
in shaping the composition of the gut microbiota (Mueller et al.  2015 ; Borre et al. 
 2014 ). The method of delivery, breast-feeding, weaning, and antibiotic treatment 
are among the factors that infl uence the microbial community during this stage of 
development (Penders et al.  2006 ; Lemon et al.  2012 ). For example, infants born via 
caesarean section (C-section) show markedly different bacteria not only in their gut 
but also on their skin, noses, mouths and rectums in comparison to babies born vagi-
nally. Infants born vaginally were colonized predominantly by Lactobacillus  spp , 
microbiota that helps in the digestion of milk oligosaccharides (Johnson and 
Versalovic  2012 ). The C-section infants, however, were colonized by a mixture of 
potentially pathogenic bacteria that are usually found on the skin and in hospitals, 
such as Staphylococcus and Acinetobacter (Johnson and Versalovic  2012 ; Mueller 
et al.  2015 ). Although these differences in the composition of the microbiota are 
temporary, previous studies suggest that C-section born babies are more likely to 
develop allergies, asthma and other immune and neuronal system–related disorders 
than are babies born vaginally (Mueller et al.  2015 ). 
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15.3.1     Microbe-Immune-Brain Interfaces: Sites for Epigenetic 
Regulation 

 While the term epigenetics is now often used in a rather broad sense, within scien-
tifi c disciplines it may have slightly different nuances. In the most general terms, 
epigenetic mechanisms are used to describe the regulation of gene expression in a 
programmed manner, as for example during development. In neurosciences, the 
term epigenetics is often used to accommodate the fact that this molecular epigen-
etic machinery is intimately involved in the dynamic regulation of neuronal gene 
expression, including plastic changes in nuclear architecture, chromatin structure 
and remodelling. Three main molecular mechanisms constitute the molecular epi-
genetic machinery: Histone modifi cations, such as acetylation, methylation or 
phosphorylation, DNA modifi cations, such as CpG-methylation, and regulatory 
RNAs. Thus, epigenetic regulators control the amount of expression of a gene by 
integrating external and intracellular signalling cascades transcriptional or transla-
tional level. 

 Dynamically regulating neuronal gene expression, all of these processes have 
been demonstrated to be necessary for brain development and function throughout 
life (for recent reviews see Fischer  2014 ; Woldemichael et al.  2014 ). The fi rst obser-
vations have been made studying the dynamics of transcription during long-term 
memory formation, which critically depends on  de novo  gene expression (Da Silva 
et al.  2008 ). Aiding in this process, a key role learning-induced gene regulation 
seems to be histone acetylation, which is regulated by histone acetyltransferases 
(HATs) and histone deacetylases (HDACs). These conserved protein families are 
well understood and currently under investigation as promising targets in neurode-
generative diseases and cognitive decline (Stilling et al.  2014b ). 

 In addition to histone and DNA modifi cations, also non-coding RNAs (ncRNAs) 
and RNA modifi cations are now well established as modulators in development, 
normal brain function and neuropsychiatric disease (Qureshi and Mehler  2012 ; 
Barry and Mattick  2012 ). Most prominently these are small RNAs, incl. miRNAs 
(O’Connor et al.  2012 ; Saab and Mansuy  2014 ) and piRNAs (Landry et al.  2013 ), 
and lncRNAs (Schaukowitch and Kim  2014 ; Ng et al.  2013 ). More recently also 
recoding of the genomic information by RNA editing, neuronal activity-dependent 
alternative splicing (Schor et al.  2009 ) as well as RNA methylation (Meyer et al. 
 2012 ) have recently been added to the list of RNA-dependent mechanisms that alter 
gene expression or the function of the encoded protein in response to external stim-
uli. Interestingly most of these processes are enriched in the brain compared to other 
tissues. Importantly, many of these RNA-based processes are not only interacting 
with each other (Barry and Mattick  2012 ) but are also intimately linked to the other 
epigenetic processes. There is now a growing appreciation of the role of epigenetic 
mechanisms in shaping brain and behaviour and mediating at least some of the 
effects of the microbiota on host regulatory programs, even though the underlying 
molecular mechanisms leading to these behavioural and biochemical alterations are 
not well understood.  
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15.3.2     They Come to Stay: Early-Life Events Affect Microbiota 
and Brain Development 

 Early-life establishment of the immune system is heavily infl uenced by the coloniza-
tion with diverse commensals, which offers a plethora of antigens that are crucial for 
appropriate maturation of the immune system as evidenced by reports from germ 
free (GF) animals exhibiting exhibit severely immature immune function (Cebra 
 1999 ; Hooper et al.  2012 ; Cahenzli et al.  2013 ). Moreover, it is well- documented that 
maturation and maintenance of the immune system also depend on epigenetic modi-
fi cations that govern the expression of immune-related genes and transcriptional pro-
fi les of immune cells (Weng et al.  2012 ; Stender and Glass  2013 ). As a recent 
proof-of-concept study, Kumar et al. reported that changes in DNA methylation in 
human blood samples were associated with the dominant bacterial phylum prevalent 
in faecal samples (Kumar et al.  2014 ). Interestingly, multiple authors suggested epi-
genetic mechanisms to mediate interactions between the host and its associated 
microbiota by, even though largely with respect to pathogenic or parasitic microbes 
(Gomez-Diaz et al.  2012 ; Minarovits  2009 ; Paschos and Allday  2010 ; Al Akeel 
 2013 ; Silmon De Monerri and Kim  2014 ; Kim  2014 ). More recently, these concepts 
were extended/amended to include also non-pathogenic microbiota (Stilling et al. 
 2014a ,  b ; Shenderov and Midtvedt  2014 ), which may be an important target of future 
research in the context of brain and behaviour. Recently, the intestinal microbiota has 
been also shown to modulate homeostasis and infl ammatory response of the intesti-
nal epithelium in an HDAC3-dependent manner (Alenghat et al.  2013 ), thereby 
establishing a direct connection between microbiota and epigenetic gene regulation. 

 It is now well established that the effects of early-life events on adult behaviour 
are mediated by epigenetic mechanisms (Kundakovic and Champagne  2015 ). 
Notably, there is also increasing evidence that there is mutual interaction between 
the microbiota and the effects of early-life events and potential convergences 
between epigenetic mechanisms and host-microbiota dialogue are emerging from 
studies exploring the impact of early-life events on both, microbial composition and 
brain function. Using maternal separation as an early-life stressor in rats it was 
demonstrated that postnatal adversity, next to its effects on anxiety- and depressive- 
like behaviours, changes the composition the intestinal microbiota and induces vis-
ceral hypersensitivity later in life (O’Mahony et al.  2009 ,  2014 ; Hyland et al.  2015 ). 
Thus, there is a strong indication for an interaction between early development of 
brain and microbiota and that this interaction epigenetically programs adult behav-
iour and the response to stress (Jasarevic et al.  2015 ). 

 Early colonization is also linked to activation of the hypothalamic-pituitary- 
adrenal (HPA) axis, which in turn impacts the enteric nervous system (ENS) that 
innervates the GI tract (Borre et al.  2014 ; Walker  2013 ). The benefi cial effects of the 
early colonizing microbiota in developing immune and nervous systems, extracting 
nutrients from food and keeping harmful microbes at bay, presumably via the pro-
cess of colonization resistance (El Aidy et al.  2013c ), support the concept of the 
presence of a critical window of development during the early life that allows for a 
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full-scale establishment of an adequate microbiota-accommodating homeostasis. 
This notion coincides the microbiota-defi ciency hypothesis, which postulates that 
colonization with a “healthy” microbiota during the vulnerable developmental 
period exerts effects that may decrease susceptibility to diseases, whereas its 
absence or dysbiosis, as in antibiotic treatment in childhood, may have reverse 
effects (Rook  2013 ). 

 Throughout adulthood, the gut microbiota seems to be more stable although ado-
lescents have been reported to harbour a higher abundance of Bifi dobacteria and 
Clostridia in comparison to adults (Agans et al.  2011 ). As a fi nal age-related micro-
bial shift, changes in the function and composition of the gut microbiota occurs 
during old age, which is associated with changes in physiological functions, includ-
ing a decline in the immune system (Claesson et al.  2012 ). A shift in the ratio of 
Bacteroidetes to Firmicutes, distinct decrease in Bifi dobacteria, and an overall 
increase in the total number of facultative anaerobes were observed in aged people 
(Mariat et al.  2009 ). Age-related changes in the microbiome is also mirrored in the 
host excretion profi les (urine and faeces) of bacterial-dependent metabolites 
(Nicholson et al.  2012 ) highlighting the signifi cance of host-microbe co- metabolism 
in governing their intimate interactions.   

15.4     A Microbiome Industrial Age: The Bodies Bacterial 
Bioactive Factories 

 The chemical dialogue between the microbiome and host cells involves small mol-
ecule signalling (metabolites, peptides and proteins) and varies along different 
regions of the GI tract, which inhabit different members of the commensals (Gordon 
 2012 ; El Aidy et al.  2013a ; Nicholson et al.  2012 ). These signalling molecules play 
a key role in shuttling information between the host cells and its microbiota. In fact, 
about one third of the metabolites circulating in the blood depends on the microbi-
ota for their synthesis (Bourzac  2014 ). Even cerebral metabolites are infl uenced by 
our microbiome, signifying the impact of intestinal microbiota on brain health and 
disease (Matsumoto et al.  2013 ). During the metabolism of food and xenobiotics, 
the gut microbiota can carry out a wide range of biotransformation reactions, includ-
ing those that are not present in the mammalian host (Van Duynhoven et al.  2011 ). 
Indeed, several dietary components have limited bioavailability in their intact form; 
thereby require the gut microbiota to convert them into metabolites with benefi cial 
health effects that can undergo further metabolism upon entering systemic circula-
tion (Fig.  15.1 ). Dietary nutrients, such as polyphenols, act as prebiotics that affect 
both the composition and metabolism of the intestinal microbiome (Bolca et al. 
 2013 ). Polyphenols have been shown to increase the abundance of benefi cial 
microbes such as Bacteroides, Lactobacillus and Bifi dobacterium (Jin et al.  2012 ; 
Tzounis et al.  2011 ) but also inhibit the growth of potentially pathogenic bacteria. 
For example, Catechin was found to signifi cantly inhibit proliferation of the patho-
genic Clostridial species (Tzounis et al.  2008 ). Through their effect on the 
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  Fig. 15.1     The microbiome industrial age . Host genetics, life style and available nutrients (diet) are 
the main determinants of the composition and diversity of the intestinal microbiome. This lays the 
basis for production of microbial metabolites that act as effector molecules, yielding substrates for 
downstream host metabolic reactions and regulating host physiology. This, at least in part, is 
orchestrated by epigenetic mechanisms. In addition, the host immune system is stimulated by 
intestinal microbes and immune signals are relayed to other organs, including the brain. Together 
with direct nervous connections, these mechanisms infl uence brain functions, including anxiety, 
neurodevelopment, and pain perception. Therefore, the microbiome is an important part of a feed-
back loop, mediating of gene-environment interactions. Abbreviations:  EEC  enteroendocrine cell, 
 DC  dendritic cell,  ENS  enteric nervous system       
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microbiome, polyphenols can affect not only the GI tract but also other organs 
including the brain. Several epidemiological studies suggest that polyphenols may 
benefi cially affect human brain function and may improve memory and cognition, 
presumably via free radical scavenging, or the modulation of enzyme activities 
(Schaffer and Halliwell  2012 ).

   Nonetheless, only a handful of bioactive microbiota-dependent metabolites have 
been identifi ed to date, with very few known to be involved in maintaining the host- 
microbial homeostasis (Nicholson et al.  2012 ). Unravelling the complex microbiota- 
metabolic processes and products is coming to grips with the diffi culty in culturing 
the majority of the intestinal microbiota under standard laboratory conditions. The 
fact that metabolites produced by one bacterium can be utilized or modifi ed by oth-
ers adds to the complexity of the identifi cation of microbiota-produced metabolites. 
Moreover, the classifi cation of the identifi ed metabolites as microbiota- or host- 
derived is another challenge since the majority of metabolites are shared between 
pro and eukaryotes (Peregrin-Alvarez et al.  2009 ). Linking the intestinal microbiota 
composition to functionality requires bottom-up as well as top-down approaches 
with combined application of  in vitro , humanized mouse models and human inter-
vention trials (Van Duynhoven et al.  2011 ). In a recent study, a metabolomics strat-
egy was developed to facilitate the characterization of microbiota-dependent 
metabolites and describe which molecules are formed from which bacterial bio-
transformation reactions (Sridharan et al.  2014 ). Among the identifi ed metabolic 
reactions, amino acid metabolism represented the largest group that require the 
microbiota for their synthesis and metabolism, as illustrated by their low abundance 
or absence in the caecum of GF mice. The fi ndings of this study are compatible with 
previous reports plasma and urine metabolites in GF and antibiotic-treated rodents 
(Wikoff et al.  2009 ; Zheng et al.  2011 ). 

15.4.1     Microbiota-Dependent Metabolites 

 TRIMETHYLAMINE (TMA) is the product of microbiota-dependent choline 
(essential dietary nutrient) metabolism (Dumas et al.  2006 ). TMA is identifi ed only 
in the urine samples of ex-GF mice indicating it is exclusively produced by the gut 
microbiome (El Aidy et al.  2013a ; Claus et al.  2008 ). A potential link between the 
intestinal microbiota, dietary choline, and cardiovascular disease risk has been sug-
gested, where increased metabolites of the dietary lipid phosphatidylcholine have 
been observed in the blood of patients suffering from myocardial infarction or 
stroke compared to that of normal individuals (Wang et al.  2011 ). TMO is also asso-
ciated with bad breath as seen in patients with the genetic disease trimethylaminuria 
that is associated with a mutation of the liver enzyme fl avin-containing monooxy-
genase 3 (FMO), which oxides TMO into trimethylamine-N-oxide (TMAO) 
(Mitchell and Smith  2001 ). Recently, TMO was shown to be involved in species- 
specifi c social communication, via its olfactory receptor, trace amine-associated 
receptor 5 (TAAR5) (Li et al.  2013 ). Unlike in humans, TMO is detected in mouse 
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urine in much higher levels, where it serves as a strong attractive odour source to 
ensure that mating and other social behaviours are properly directed in a 
concentration- dependent manner. Indeed, depletion of FMO or depletion of the 
TAAR5 receptor was linked with decreased odour attraction in mice suggesting an 
impact of TMO on behaviour and brain function. 

 BILE ACIDS integrated metabolism in mammals represent an intriguing exam-
ple of the inter-kingdom signalling between the host and microbiota. Bile acids 
function by facilitating the metabolism of dietary fat and the absorption of fat- 
soluble vitamins and cholesterol. Biotransformation of about 5–10 % of bile acids 
occurs through degradation by the major groups of intestinal bacteria, including 
Bacteroides, Eubacterium, Lactobacillus, Escherichia and Clostridium via bile salt 
hydrolase enzymes (Ridlon et al.  2006 ). Reports from GF and antibiotic treated 
rodents described the crucial role of the intestinal microbiota in the metabolism of 
bile acids. GF mice have higher levels of phospholipids in their liver and higher 
levels of bile acids in gut tissue, indicating that the gut microbiota is a key regulator 
of bile acid metabolism (Swann et al.  2011 ). Altered expression in genes associated 
with cholesterol, steroid, and bile acid synthesis as well as altered conjugated bile 
acid was characteristic in multiple body compartments of these animals. 

 Bacterial degradation of bile acids involves the deconjugation of taurine- and 
glycine-conjugated bile acids to unconjugated free bile acids, which in turn undergo 
reabsorption, mainly by bile acid transporters in the ileal epithelium but also by pas-
sive absorption throughout the intestine (Dawson et al.  2009 ). Through their action 
on bile acid metabolism, the intestinal bacteria can indirectly affect several path-
ways involved in energy and lipid metabolism, bile acid synthesis and transport, 
lipid and carbohydrate metabolism, and even the regulation of intestinal innate 
immunity. This action occurs via the ligation of bile salts with one of the nuclear 
hormone receptors; the farnesoid X receptor (Vavassori et al.  2009 ). 

 Impaired bile acid metabolism has been linked with microbial dysbiosis (Duboc 
et al.  2013 ), which in turn alters the capacity of the gut community to modify bile 
acids (Ogilvie and Jones  2012 ) resulting in impairment of the enterohepatic fl ow, 
which is required for regulation of bacterial populations and growth rates to achieve 
the normal balance of bacteria throughout the GI tract (Ogilvie and Jones  2012 ). 
Impaired enterohepatic fl ow leads also to digestion and absorption of fat-soluble 
nutrients and is associated with impairment in bile-acid amino transferase (BAAT), 
which catalyses the fi nal reaction in the formation of the primary conjugated bile 
acids. Intriguingly, in a case-study of an old female who had a genetic defi ciency in 
BAAT, showed unique pattern of elevated levels of taurine and glycine bile acids, 
CNS dysfunction and intestinal dysbiosis with elevated levels of  Fusobacteria . 
Correction of microbial population and improved CNS functions were rapidly pro-
duced upon application of BAAT replacement therapy ( Lord et al. 2014 ). 

 Bile acids-related microbial dysbiosis has also been linked with hepatic encepha-
lopathy (Bajaj et al.  2013 ). Hepatic encephalopathy represents an interface for the 
microbiota signalling to the gut-liver-brain axis. The successful treatment of hepatic 
encephalopathy with antibiotics suggests the involvement of microbial dysbiosis in 
the aetiology of the disease. Indeed, microbiota changes in hepatic encephalopathy 
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have been associated with impaired cognition, endotoxemia, and infl ammation, 
where reduced abundance of the taxa Lachnospiraceae, Ruminococcaceae, and 
Clostridiales XIV and increased Enterobacteriaceae and Streptococcaceae were 
reported (Bajaj et al.  2012 ). This dysbiosis is related to a reduction in hepatic bile 
acid synthesis, which in turn leads to more release into the intestine, and subsequent 
systemic infl ammation. Dysbiosis in hepatic encephalopathy results also in an 
increase in gut-derived products such as ammonia, endotoxin, infl ammatory cyto-
kines, and bacterial DNA into the systemic circulation via the mal functioning liver 
(Zapater et al.  2008 ). Subsequently brain dysfunction including cognitive impair-
ment and neuro-infl ammation has been associated with HE (Bajaj  2014 ). 

 In summary, bile acids represent an intriguing example of co-metabolism 
between the gut microbiota and host and suggest that modulation of bile acid metab-
olism activity in the microbiota may be an effective target in the treatment of obesity 
and metabolic syndrome (Joyce et al.  2014 ). 

 PHENOL and phenolic derivatives are produced by the intestinal microbiota, in 
particular, Clostridium, Bifi dobacterium,  Bacteroides fragilis  and  Escherichia coli , 
from tyrosine (Bone et al.  1976 ). Around 50–100 mg of volatile phenols are excreted 
in humans per day, mainly in the form of glucuronide and sulphate conjugates of 
phenol or 4-cresol (Nicholson et al.  2012 ). Altered levels of volatile phenols in 
human urine have been linked to a large array of physiological and pathological 
conditions, including weight loss and infl ammatory bowel disease (IBD). 4-Cresol 
produced by Clostridia was detected at signifi cantly higher concentrations in the 
urine samples of children with autism spectrum disorders (ASD) and in schizophre-
nia and treatment with antibiotics against Clostridia species improved the autistic 
symptoms (Zheng et al.  2011 ). The underlying mechanism by which phenolic com-
pounds produced by Clostridia contribute to the markedly altered behaviour in 
autism and other neuropsychiatric diseases is proposed to involve the inhibition of 
the conversion of dopamine to norepinephrine (Shaw  2010 ). Elevated levels of 
dopamine not only cause abnormal behaviour but also in severe brain damage. 

 Notably, 4-cresol (4-methylphenylsulfate) shares structural similarity with 
another microbial-dependent metabolite: 4-ethylphenylsulfate (4EPS) (Hsiao et al. 
 2013 ). Like, 4-cresol, 4EPS was found to induce ASD related behavioural abnor-
malities when injected in naïve mice. Moreover, 4EPS was dramatically elevated in 
serum levels of offspring of maternal immune activation (MIA), a mouse model 
which exhibits features of ASD. 4EPS is proposed to be produced by Lachnospiraceae 
family of Clostridia and ingestion of  Bacteroides fragilis  was elegantly shown to 
restore the serum levels of 4EPS to normal. 

 INDOLE is exclusively produced by the intestinal microbiota, which converts 
tryptophan into indole, pyruvate and ammonia by the bacterial tryptophanase enzyme 
(Lee and Lee  2010 ). Indole regulates gut immune cells and is proposed as a potential 
treatment of IBD via its immunomodulatory and anti-infl ammatory effects on intesti-
nal epithelial cells, which are central regulators of gut homeostasis (Bansal et al. 
 2010 ). Indole can be further modifi ed into indole-2-acetic acid (IAA) and the neuro-
protective molecule; indole-3-propionic acid (IPA). Incubation of human large intes-
tinal content with tryptophan and indolelactate resulted in the production of IPA 
 in vitro  (Smith and Macfarlane  1997 ).  In vivo , IPA was detected in the plasma and 
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cerebrospinal fl uid (Young et al.  1980 ). Intriguingly, IPA was shown to completely 
protect primary neurons and neuroblastoma cells against oxidative damage and death 
caused by exposure to Alzheimer β amyloid protein, via inhibition of superoxide 
dismutase, or by treatment with hydrogen peroxide (Chyan et al.  1999 ). Collectively, 
the gut microbiota appears to sequester tryptophan from the diet and alter its metabo-
lites in the host, resulting eventually in altered brain levels of neuropeptide that affect 
the brain function. In fact, the key microbial enzyme tryptophan decarboxylase, which 
converts dietary tryptophan to the neuropeptide tryptamine, has been recently identi-
fi ed (Williams et al.  2014 ). The enzyme was found to be present in several bacteria 
that colonize about 10 % of the human population. Altered levels of tryptamine in 
urine have been used in diagnosis, where low levels of tryptamine in urine were 
detected in patients with severe depression (Coppen et al.  1965 ). Tryptamine also 
stimulates the release of serotonin from enterochromaffi n epithelial cells (Takaki 
et al.  1985 ) and is a key regulator of the gut motility and secretion (Turvill et al.  2000 ). 

 VITAMINS B12 and K are synthesized by the intestinal microbiota that are also 
capable of producing most of the water-soluble B vitamins, such as biotin, cobala-
min, folates, nicotinic acid, panthotenic acid, pyridoxine, ribofl avin and thiamine in 
humans (Hill  1997 ). Vitamin B12 (cobalamine), which is essential for the develop-
ment of the nervous system (Dror and Allen  2008 ), is produced by  L. reuteri  (Santos 
et al.  2008 ). Vitamin K, which has a modulatory role in cognition (Ferland  2012 ), is 
produced by several bifi dobacterial strains (Leblanc et al.  2013 ). Microbially pro-
duced vitamins are taken up in the colon unlike the dietary vitamins, which are 
adsorbed in the proximal tract of the small intestine (Said and Mohammed  2006 ). 

 SCFAs are produced by the fermentation of complex polysaccharides in the 
colon, which require the cooperative action of different microbial population groups, 
including various species of the anaerobic Fermicutes; Clostridial clusters IV and 
XIVa such as  Eubacterium ,  Roseburia ,  Faecalibacterium , and  Coprococcus  species 
(Flint et al.  2012 ; El Aidy et al.  2013c ). Complex carbohydrates are broken down to 
mono- and oligomeric compounds that can be broken down further to the SCFA 
acetate, propionate, and butyrate as well as to carbon dioxide (CO 2 ,) and molecular 
hydrogen (H 2 ). Other important intermediates are lactic acid, ethanol, succinic acid, 
and formate that are also degraded to SCFA, CO 2 , and H 2  (Blaut and Clavel  2007 ). 
SCFAs are the preferred source of energy for colonocytes and are also considered as 
a source of energy to the brain, where they can cross the blood-brain barrier to be 
taken up by the glial cells and, to lesser extent, the neurons (Karuri et al.  1993 ). 
Subsequently, continual secretion of SCFAs by the intestinal microbiota may result 
in long-lasting effects on gene expression patterns that are necessary for appropriate 
neuronal development and function even though the effects of SCFAs that cross the 
blood-brain barrier under physiological conditions may be marginal. 

 In adequate levels, propionate was shown to improve insulin sensitivity and 
lower serum cholesterol levels (Hosseini et al.  2011 ). Nonetheless, studies con-
ducted in rodents suggested that excessive levels of propionate are detrimental to 
the host health and behaviour, indicating it is crucial to maintain a balanced micro-
bial community. Indeed, higher levels of Bacteriodetes and Clostrial species were 
detected in patients with ASD (Hosseini et al.  2011 ). Intraventricular injection of 
propionate in rats was associated with impaired social behaviour and altered brain 

15 Microbiome to Brain: Unravelling the Multidirectional Axes...



314

phospholipid composition in a way similar to symptoms observed in ASD patients 
(Thomas et al.  2012a ). The link of propionate with ASD is due to its ability to alter 
the levels of the neuropeptides; serotonin, glutamate and dopamine (El-Ansary et al. 
 2012 ). Butyrate has been the focus of many  in vitro  and  in vivo  studies, which 
unravelled its impact on the human physiology. Butyrate regulates energy homeo-
stasis, stimulate leptin production in adipocytes (Musso et al.  2011 ). Moreover, lev-
els of the neuropeptide glucagon-like peptide-1 (GLP-1) were induced in response 
to butyrate, resulting in modulation of insulin secretion, lipid and glucose metabo-
lism, and food intake (Burcelin et al.  2007 ). Butyrate was also reported to have 
profound effects on mood and behaviour, where it elicited antidepressant effects in 
murine brain (Schroeder et al.  2007 ). Through their effect on gastric motility and 
intestinal transit stimulation, SCFAs resulted in an elevation in serotonin release as 
reported in an  in vitro  colonic mucosal system (Grider and Piland  2007 ). SCFAs 
have been reported to alter the expression of brain derived neurotrophic factor 
(BDNF), stimulate the sympathetic nervous system, and may infl uence social 
behaviour in rodents (Macfabe et al.  2011 ; Schroeder et al.  2007 ). Acetate, is a 
major substrate for acetyl CoA synthesis and, through the histone acetyltransferase 
(HAT) activity, is involved in the process of acetylation of histone tail lysine resi-
dues (Stilling and Fischer  2011 ). Thus, SCFAs enhance histone acetylation by inhi-
bition of HDACs on the one hand and increased availability of HAT substrate on the 
other hand. In fact, several  in vitro  and  in vivo  models for learning and memory and 
neurodegenerative diseases illustrated that enhanced histone acetylation facilitated 
long-term memory consolidation and neuroprotection/-regeneration in a numerous 
 in vitro  studies and animal (Peleg et al.  2010 ; Govindarajan et al.  2011 ). 

 In summary, the microbial derived SCFAs are essential contributors to host metab-
olism through their action as an energy source or through balancing host gene expres-
sion throughout brain development and, more dynamically, in adulthood (Macfabe 
 2012 ; Gundersen and Blendy  2009 ; Thomas et al.  2012b ; Selkrig et al.  2014 ). 

 In addition to SCFAs, the intestinal microbiota is capable of affecting the avail-
ability of dietary sources of methyl-group donors by modulation of one carbon 
metabolism and thereby potentially affecting host DNA and histone methylation 
(Cabreiro et al.  2013 ). Spermidine, a ubiquitous polyamine, has also been also 
shown to be produced by the intestinal microbiota (Noack et al. 2000). Spermidine 
has benefi cial effects on ageing and age-associated memory impairment (Gupta 
et al. 2013), which may in part be mediated by an alteration in histone acetylation 
(Das and Kanungo 1979).   

15.4.1.1     Neuroactive Chemicals 

 It is well recognized that a variety of the intestinal microbiome, in particular, lactic 
acid bacteria, has the capacity to produce several molecules with neuroactive func-
tion including gamma amino butyric acid (GABA), acetylcholine, catecholamines, 
and serotonin. For example, GABA is produced by species of Lactobacillus and 
Bifi dobacterium, with  L. brevis  and  B. dentium  being the most effective producers 
(Barrett et al.  2012 ). GABA appears to protect its producing bacteria from the 
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gastric acidity (Higuchi et al.  1997 ). Intriguingly,  in vivo  experiments illustrated a 
modulatory effect of the microbiota-derived GABA on the host neural cells (Bravo 
et al.  2011 ). Ingestion of  L. rhamnosus  JB-1 resulted in differential expression of 
the GABA A and B receptor subunits, which are responsible for maintaining normal 
fear and mood responses. 

 Several species of  Escherichia ,  Bacillus ,  Lactococcus ,  Lactobacillus ,  and 
Streptococcus  are capable of producing the catecholamines; dopamine and norepi-
nephrine (Shishov et al.  2009 ) in quantities that are thought to be higher than the 
catecholamines content in the human blood (Wall et al.  2014 ). The intestinal lumen 
of GF mice has lower levels of biologically inactive dopamine and norepinephrine 
than their conventionally raised counterparts. The substantial elevation of the lumi-
nal free catecholamines was associated with the colonization of gut microbiota, 
which has abundant beta-glucuronidase activity (Asano et al.  2012 ). Moreover, 
dopamine receptor expression is signifi cantly altered in the gut and circulation but 
also in the brain during development (El Aidy et al.  2013b ; Diaz Heijtz et al.  2011 ; 
Neufeld et al.  2011 ). Catecholamines represent the major class of neurotransmitters, 
which are involved in various neurological functions including emotion and endo-
crine regulation as well as cognition and memory processing (Kobayashi  2001 ). 
Subsequently, disturbance in catecholamines levels have been linked to several neu-
rological disorders such as Parkinson disease (Calabresi et al.  2013 ), Alzheimer’s 
disease (Robertson  2013 ) and major depressive disorders (Hamon and Blier  2013 ). 

 Acetylcholine is produced by different strains of Bacillus and Lactobacillus, in 
particular  L. plantarum  (Girvin and Stevenson  1954 ). Acetylcholine is crucial in 
maintaining cognitive function, memory and learning as well as the neuro- 
infl ammatory infl ux circuit (Olofsson et al.  2012 ). 

 Various Streptococcus, Escherichia, Enterococcus, Lactococcus, and 
Lactobacillus strains produce the neuroactive compound serotonin. Reports from 
animal experiments showed that ingestion of  B. infantis  for 2 weeks resulted in 
elevated plasma levels of the precursor of serotonin; tryptophan (Desbonnet et al. 
 2008 ). Moreover, the plasma levels of serotonin were three times higher in 
 conventionally raised mice when compared to GF mice (Wikoff et al.  2009 ). In 
contrast, the levels of tryptophan were lower in conventionally raised mice (El Aidy 
et al.  2014a ; Clarke et al.  2013 ). It remains to be unfolded how the intestinal micro-
biome impacts the tryptophan metabolism, presumably through the modulation of 
the expression level of the catalytic enzyme indoleamine 2,3 dioxygenase (Ido) in 
the Kynurenine arm, which occurs during immune activation (Moffett and 
Namboodiri  2003 ) and is observed in many disorders of both the brain and GI tract 
(Forsythe et al.  2010 ) but also transiently during primary gut colonization (El Aidy 
et al.  2012a ). Recently it has been shown that gut microbiota, acting through SCFAs, 
is an important determinant of enteric serotonin production and homeostasis 
(Reigstad et al.  2014 ). The gut microbiota from ex-GF colonized with human gut 
microbiota and conventionally raised mice signifi cantly increased the colonic rate 
limiting for mucosal serotonin synthesis; tryptophan hydroxylase (Tph) 1 mRNAs 
as well as the neuroendocrine secretion gene; chromogranin A, through the action 
of SCFAs. 
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 Cyclic dipeptides (CDPs), a group of hormone-like compounds, represent 
another example of inter-kingdom signalling. Bacteria not only use CDPs in com-
municating with each other, but also in signalling to its host that uses the same 
molecules to regulate infl ammation and induce protective effect in neuronal cells 
(Bellezza et al.  2014 ), suggesting that CPDs could have therapeutic value in a range 
of infl ammatory and neuronal disorders. 

 It remains to be elucidated though why certain members of the intestinal micro-
biome are capable of producing neurochemicals. Bacteria use these molecules to 
communicate with each other in a process known as Quorum-sensing (Lyte  2011 ). 
It is thus possible that bacteria utilize these chemical signalling molecules in order 
to communicate with their hosts (Boontham et al.  2008 ). In fact, these intraluminal 
neuropeptides are thought to play a crucial role in modulating the ENS through their 
action on epithelial cells, to eventually infl uence the central nervous system (CNS), 
mood and behaviour (Lyte  2011 ; Dinan et al.  2013 ). It is thus tempting to view these 
bacteria as delivery vehicles for neuropeptides, which may be pivotal in the preven-
tion and treatment of certain neurological and psychological disorders. This idea 
has recently been coined the term “psychobiotics” (Dinan et al.  2013 ). 

15.4.2     Microbial Mimicry of the Host Epigenetic Machinery 

 Next to modulation of host epigenetics through metabolic activity, several patho-
genic bacteria are able to secret effector proteins that mimic eukaryotic epigenetic 
enzymes and regulators to orchestrate infected cells in their own favour (Bierne and 
Cossart  2012 ). So far, these molecular tools have been discovered exclusively in 
intracellular parasites that interact with host signalling within the intracellular envi-
ronment. It will be intriguing to search for such capabilities neuron-targeting patho-
gens as well as non-pathogenic microbes secreting epigenetic modulators that may 
be transported across epithelia and plasma membranes to affect host cells in a more 
paracrine manner. Taken together, the above-mentioned examples for inter-kingdom 
molecular manipulation shows the versatile ways open to microbes to interact with 
the host’s transcriptional machinery.   

15.5     The Gut-Brain Axis: The Pathways for Gut Microbiota 
to Modulate Brain Function 

 Although great progress has been made over the last decades in describing the bidi-
rectional interactions between the GI tract, ENS and CNS, novel interest in this fi eld 
of research has been stimulated by a growing body of intriguing preclinical studies 
signifying a prominent role of the gut microbiome in the gut-brain dialogue. 
The modulatory effect of the gut microbiota on the gut brain axis was demonstrated 
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in a number of studies using GF animal models, or modulation of microbiota with 
antibiotics, faecal microbial transplantation (Bercik et al.  2011a ) or probiotics (Bravo 
et al.  2011 ). On the molecular level, GF mice show an altered expression of genes 
involved in neuropeptide production,  N -methyl- D -aspartate (NMDA) receptor sub-
units (Neufeld et al.  2011 ) and genes involved in brain development and behaviour 
including altered expression of BDNF in the hippocampus (Diaz Heijtz et al.  2011 ; 
Gareau et al.  2011 ). Interestingly, some of the reported molecular changes in neuro-
receptor expression have been associated with altered mood and behaviour. In the 
absence of a normal gut microbiome, signifi cant changes in adult depression like 
behaviour (Schroeder et al.  2007 ), nociceptive responses (Amaral et al.  2008 ; 
Rousseaux et al.  2007 ), stress responsiveness (Gareau et al.  2007 ) and social devel-
opment (Desbonnet et al.  2014 ) have been shown, and these alterations were partially 
reversed by colonization of the GI tract. The gut microbiota was associated with 
elevation in anxiety-like behaviour in conventional mice upon ingestion of probiotics 
such as  L. rhamnosus  (Bravo et al.  2011 ),  B. longum  (Bercik et al.  2011a ) and  B. 
infantis  (Desbonnet et al.  2010 ). GF mice have recently been shown to have elevated 
repetitive behaviours and core social abnormalities in a similar way to that observed 
in ASD (Desbonnet et al.  2014 ). These fi ndings are further supported by the correla-
tive studies performed in humans, albeit in relatively small cohorts, which suggested 
that ASD may be associated with alterations in microbiota composition and metabo-
lism (Critchfi eld et al.  2011 ; De Theije et al.  2011 ; Gondalia et al.  2012 ; Louis  2012 ; 
Macfabe  2012 ; Ming et al.  2012 ; Mulle et al.  2013 ; Douglas- Escobar et al.  2013 ). As 
such, the mechanisms underlying the development of ASD are still to be determined. 
While the cause of these conditions seems to be mostly genetic (including  de novo  
mutations), it is unclear how the genetic information is translated to the behavioural 
and gastro-intestinal phenotypes associated with ASDs. Interestingly, both epigenetic 
mechanisms, including ncRNAs, (Grafodatskaya et al.  2010 ; Hall and Kelley  2014 ; 
Helsmoortel et al.  2014 ; Mellios and Sur  2012 ; Miyake et al.  2012 ; Schanen  2006 ; 
Wilkinson and Campbell  2013 ; van de Vondervoort et al.  2013 ; Ziats and Rennert 
 2013 ) and changes in the microbiota (Cao et al.  2013 ; Desbonnet et al.  2014 ; De 
Theije et al.  2014 ; Hsiao et al.  2013 ; Gorrindo et al.  2012 ; Kang et al.  2013 ; Peters 
et al.  2014 ) have been suggested to be involved in this process (Stilling et al.  2014a ). 

 Additionally there is evidence for a contribution of genetic and environmental 
risk factors as well as a strong effect of microbial composition in visceral hypersen-
sitivity associated with IBS (Ford et al.  2014 ; Fukuda and Ohno  2014 ; Shankar 
et al.  2013 ). Probiotic-based therapies have been used to decrease visceral hyper-
sensitivity in preclinical models (McKernan et al.  2010 ) and in human trials (Clarke 
et al.  2012 ). Moreover, in line with the suggestion that epigenetic mechanisms are 
at the heart of the clinical manifestation of IBS (Dinan et al.  2010 ) Greenwood Van- 
Meerveld demonstrated amelioration of the stress-induced increase in visceral pain 
sensitivity by administering the epigenetic drug TSA (an HDAC inhibitor) directly 
to the brain (Tran et al.  2013 ). Future studies should be targeted at clarifying how 
microbes and their metabolites modify epigenetic pathways relevant to the origin 
and central processing of visceral pain. 
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 Much of the attention directed towards the gut microbiota in regard to the 
gut- brain axis focuses on the ability of these commensals to potentially recruit the 
HPA axis to regulate the stress response and studies performed in GF mice illus-
trated an increase in the activity of HPA axis as measured by blood corticosterone 
or adrenocorticotrophic hormone levels (Neufeld et al.  2011 ; Clarke et al.  2013 ; 
Sudo et al.  2004 ). In contrast, gut neuropeptides have received considerably less 
attention in this regard although they can both be controlled by and infl uence the 
activity of the microbiome. Neuropeptides are produced in the gut in response to the 
microbial residents (Lyte and Cryan  2014 ), analogous to the neuroactive chemicals 
produced by the intestinal microbiota as discussed earlier. Specifi c members of gut 
neuropeptides can function at multiple levels of the brain-gut axis to guide not just 
local events in the GI tract but also distally at the level of the CNS to infl uence brain 
and behaviour. Bacteria can actively recognize the host neuroendocrine hormones 
and several studies showed the rapid growth and enhanced surface attachments 
(through biofi lm formation) of these microorganisms when cultured in media con-
taining small amounts of the catecholamines (Lyte et al.  2003 ). These fi ndings were 
the groundwork of the theory of “microbial endocrinology”. Intriguingly, when 
mice were administered a neurotoxic drug that caused the release of norepinephrine 
from the catecholaminergic neurons in the gut and other autonomic sites, the num-
ber of the gut populated gram negative bacteria are massively increased. These 
changes reversed as the catecholaminergic nerves regenerate within 2 weeks. The 
emerging evidence of the dramatic impact that the altered neuroendocrine environ-
ment can have on the gut microbes suggest that even minor changes in the levels of 
neuropeptides can lead to dysbiosis. 

 Bacterial components and by-products that come in contact with the gut epithe-
lium stimulate a group of gut epithelial cells, enteroendocrine cells (EECs), to pro-
duce several neuropeptides such as peptide YY, neuropeptide Y, cholecystokinin, 
glucagon-like peptide-1,2, and substance P (Furness et al.  2013 ). Through receptors 
expressed on EECs, neurons of submucosal and myenteric ganglia as well as on 
enteric leukocytes, the gut senses the bacterial by-products (Samuel et al.  2008 ; 
Nohr et al.  2013 ). Upon their secretion by EECs, neuropeptides presumably diffuse 
throughout the lamina propria, which is occupied with a variety of immune cells, 
until they reach the blood stream or act on the vagal nerve or intrinsic sensory neu-
rons (Cummings and Overduin  2007 ; Okano-Matsumoto et al.  2011 ) but the exact 
mechanisms and whether the neuropeptides have a direct contribution in the bidi-
rectional communication between the microbiota and CNS are still obscure. 
Recently, Bohorquez et al. suggested an accurate temporal transfer of the sensory 
signals originating in the gut lumen with a real-time modulatory feedback onto the 
EECs. They demonstrated a direct communication between EECs and neurons 
innervating the small intestine and colon that alternates the paracrine transmission 
(Bohorquez et al.  2015 ). 

 The interplay between gut microbiota and the gut-brain axis can also occur 
through the autonomous (enteric, sympathetic and parasympathetic, which includes 
the vagus nerve) nervous system (ANS), sensory nerves, immune mediators and 
alterations in the gut functionality (motility, secretion, and permeability) (Mayer 
 2000 ; Holzer and Farzi  2014 ). 
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 The ANS was shown to infl uence the size and quality of the mucus layer, and 
subsequently on the biofi lm structures, where the majority of the colonic microbiota 
reside (Rhee et al.  2009 ). Throughout the GI tract, the community structure of com-
mensals is likely to be dramatically altered in response to disturbed gut motility and 
increased intestinal permeability, which is also associated with small intestinal bac-
terial overgrowth (SIBO) (Van Felius et al.  2003 ). GI dysfunction, in particular 
constipation, often precedes the onset of motor symptoms by years in the aetiology 
of Parkinson’s disease (PD), since both ENS and parasympathetic nerves are 
amongst the structures earliest and most frequently affected (Derkinderen et al. 
 2011 ). A recent study carried out in PD patients illustrated that the intestinal micro-
biome is altered in PD and is related to motor phenotype (Scheperjans et al.  2014 ). 
When the faecal microbiomes of 72 PD patients were compared to those of 72 con-
trol subjects, the abundance of Prevotellaceae was found to be dramatically reduced 
in faeces of PD patients. Moreover, the relative abundance of Enterobacteriaceae 
was positively associated with the severity of postural instability. 

 Several of the studies investigating the impact of the intestinal microbiota on 
behavioural and neurophysiological changes investigated the contribution of the 
vagus nerve. Indeed, vagotomy eliminated some of the effects found in studies on 
mice fed with probiotics or pathogens (Bravo et al.  2011 ; Bercik et al.  2011b ). The 
modulated stimulation of the vagal pathways could occur as a result of altered gut 
motility or neurochemicals produced by the intestinal microbiota. Nonetheless, the 
exact modalities of how the vagus interacts with the microbiota to induce such 
effects are obscure. Other experiments suggested also that at least some of the 
observed effects of the gut microbiota on behavioural changes are functionally inde-
pendent of the vagus or other autonomous pathways (Bercik et al.  2011a ). 
Collectively, these fi ndings indicate that the vagus nerve is an important, but not the 
only mediator in the microbiota-gut-brain axis.  

15.6     The Microbiome as a Pivotal Component 
in the Psychoneuroimmunology Network 

 The intersection of neurology and immunity has its roots in modern science and the 
involvement of the nervous system in regulating the whole immune system and  vice 
versa  has led to the establishment of the fi eld of psychoneuroimmunology (Ader 
and Kelley  2007 ). A growing body of evidence shows a signifi cant contribution of 
immune signalling in normal brain function as well as during ageing and in the 
context of neurodegenerative diseases. This bidirectional cross talk is regulated by 
a network of signalling pathways, which involves (but not exclusively) the HPA axis 
and the ANS (Soliman et al.  2013 ; Lampron et al.  2013 ; Villeda et al.  2011 ; Collins 
et al.  2012 ). However, we are only beginning to fully appreciate the widespread 
interaction of the intestinal microbiota with the immune system and the neuroendo-
crine system, which strongly suggest the microbiota to be a decisive component in 
the psychoneuroimmunology network (El Aidy et al.  2014b ). Intestinal microbiota 
may coordinate the neuroendocrine-immune dialogue via several mediators 
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including epithelial cells, (mucosal) immune cells as well as peripheral neurons 
(Forsythe and Kunze  2013 ; El Aidy et al.  2012b ). For example, the ANS affects 
epithelial mechanisms involved in the intestinal immune activation through stimu-
lation of the immune cells residing in the lamina propria to produce antimicrobial 
peptides against the enteric bacteria or via modulating the access of the microbiota 
to the immune cells (Alonso et al.  2008 ). The latter effect has been linked to changes 
in the gut permeability and increased translocation of commensals under stressful 
conditions (Keita et al.  2010 ). In fact, the context of the “leaky gut” hypothesis is 
another mechanism for inducing immunomodulatory effects in disorders of the 
brain-gut axis that involves the intestinal microbiota. Chronic stress, for example, 
has been shown to increase the gut permeability to bacterial peptides (Santos et al. 
 2001 ) and the adverse effects were reversed by probiotics (Ait-Belgnaoui et al. 
 2012 ; Zareie et al.  2006 ). These fi ndings were supported by data from human stud-
ies, which indirectly suggest increased bacterial translocation in stress-related psy-
chiatric disorders such as depression (Maes et al.  2012 ). 

 In healthy conditions, the majority of the gut microbiota is kept at bay, with no 
direct contact with the host cells, suggesting that the microbial products and neuro-
active chemicals are most likely responsible for transferring the microbial signal-
ling to the host. However, in states of disease and microbial dysbiosis, several 
pathobionts (potentially pathogenic bacteria, which are part of the normal microbi-
ome community in a state of homeostasis) are capable of invading host tissues and 
can even live in intracellular vacuoles to manipulate host cells directly, thereby acti-
vating the mucosal immune cells and associated parts of the ENS (Lievin-Le Moal 
and Servin  2013 ). In fact, a similar mechanism could be orchestrating the early life 
modulation of the immune-neuroendocrine network following microbial coloniza-
tion. Some animal studies illustrated that specifi c pathobionts activate mucosal 
immune process for bacterial sampling by transient breaching the epithelial barrier 
in order to minimize their exposure to the systemic immune system. This initial 
process of immune activation is associated with stimulation a variety of immune 
pro-infl ammatory and regulatory immune components as well alter the expression 
of intestinal neuropeptides (El Aidy et al.  2013b ,  2014a ; Galindo-Villegas et al. 
 2012 ; Mazmanian et al.  2005 ). Elimination of the penetrant bacteria would require 
the engagement of immune and neuroendocrine components. Hence, this initial 
close but regulated contact could benefi t the host by strengthening its gut barrier and 
conferring protection against true invading pathogens. Intriguingly, microbiota-
immune- neurological communication is thought to be directed by neuropeptides, 
where many immune cells travel through the blood and when they come within 
scenting distance of a given neuropeptide they begin to chemotaxically orient 
toward it, and then communicate with other immune cells (Straub et al.  2006 ). 
Indeed, several neuropeptides direct the migration of immune cells, including 
immature DCs migration to lymph nodes at the start of a local immune response, as 
well as during the initial microbial colonization, via α1 adrenergic receptors, 
emphasizing the early involvement of the SNS (Maestroni  2000 ). The interaction 
between specifi c type of immune cells, ENS and microbiota was recently shown to 
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also regulate the GI motility (Muller et al.  2014 ). This regulation occurs when a 
subset of macrophages, named muscularis macrophages (MMs) that reside in close 
proximity to the myenteric plexus and intestinal cells of cajal (ICC) is stimulated by 
the intestinal microbiota to produce signalling molecules, which in turn stimulates 
the ENS (Kunze and Furness  1999 ; Muller et al.  2014 ). Whether the regulatory 
mechanisms employ signals provided by EECs remains to be elucidated. 

 Stimulation of the immune response by the gut microbiota induces the produc-
tion of pro-infl ammatory cytokines, which can inhibit the release of norepinephrine 
from noradrenoceptor axon terminals, via the induction of nitric oxide (Ruhl and 
Collins  1997 ). Elevated immune responses have also been linked with decreased 
activity of L-DOPA decarboxylase, the enzyme that converts L-DOPA to norepi-
nephrine, and subsequently reduced levels of norepinephrine as observed in both 
infl amed and non-infl amed colonic mucosae of Crohn’s patients (Magro et al. 
 2002 ). In fact, increased concentrations of infl ammatory cytokines are known to 
circumvent the mechanisms of action of conventional antidepressants, suggesting 
that inhibition of the infl ammatory cytokines would reduce depressive symptoms. 
This assumption was supported by the results from a placebo-controlled, random-
ized clinical trial showing that the TNF antagonist infl iximab reduces depression 
symptoms in a subset of patients with high baseline infl ammatory biomarkers 
(Raison et al.  2013 ). 

 Moreover, immune stimulation with non-pathogenic bacteria was shown to acti-
vate a functionally and anatomically distinct subset of serotonergic neurons, in the 
interfascicular part of the dorsal raphe nucleus of mice, which are different from the 
subset of serotonergic neurons activated by anxiety-inducing stimuli or uncontrol-
lable stressors (Lowry et al.  2007 ). Activation of the peripheral immune system with 
antigens derived from the nonpathogenic bacterium  Mycobacterium vaccae  resulted 
in increased serotonin metabolism within the ventromedial prefrontal cortex, with 
temporal reductions in immobility in the forced swim test, indicative of alters stress- 
related emotional behaviour. Likewise, treatment with serotonergic antidepressant 
drugs prevents the onset of depressive symptoms in patients with irritable bowel 
syndrome (IBS), and in patients receiving treatment with interferon (Capuron and 
Miller  2004 ; Felger et al.  2013 ). Collectively, these fi ndings suggest that serotoner-
gic systems may be a plausible route by which the gut microbiota coordinates the 
immune-neuroendocrine communication. Whether the results to date refl ect a caus-
ative or reactionary response is yet to be elucidated. 

 The principle vagal neurotransmitter, acetylcholine, is another important media-
tor in shuttling information between the microbiota and host nervous and immune 
systems, all of which can produce and respond to neuropeptides. Acetylcholine 
attenuates the release of a plethora of pro-infl ammatory cytokines with no effect on 
the anti-infl ammatory IL-10 (Borovikova et al.  2000 ), and is released from a subset 
of CD 4  + T cells that transfer the signal to other immune cells through the activation 
of α7 nicotinic acetylcholine receptors on macrophages (Wang et al.  2003 ). 
Acetylcholine is also produced by a specifi c type of T cells known as ChAT +  T cells 
that are present in high abundance in the Peyer’s Patches, supposedly to exhibit both 
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defensive and regulatory roles at the gut mucosal surface, where trillions of microbes 
reside (Rosas-Ballina et al.  2011 ). Microbial colonization was shown to be required 
for the expression of a subset of B cells that expresses acetylcholine receptor 
(ChAT + B cells), which reside only in mucosal-associated lymphoid tissues (Reardon 
et al.  2013 ). Expression of the acetylcholine receptor on ChAT + B cells begins at 
birth and involves MyD88 dependent toll like receptor signalling. The assumption 
was evident by the reduction in Ach receptor expression following antibiotic treat-
ment. Taken together, this evolving data strongly supports a key role of the gut 
microbes in orchestrating psychoneuroimmunology functions.  

15.7     From Animals to Humans: Translation of Laboratory 
Animal Research Evidence 

 Despite the extensive preclinical data supporting the impact of the gut microbiota 
on the gut-brain dialogue, limited information is available of how these fi ndings 
may translate to human in health and disease. A recent study in a healthy cohort of 
56 vaginally born Dutch infants was performed to investigate the development of 
the gut microbiota as a potential pathway linking maternal prenatal stress and infant 
health (Zijlmans et al.  2015 ). The fi ndings showed clear links between maternal 
prenatal stress and the infant gut microbiota. Infants of mothers with high cumula-
tive stress during pregnancy had signifi cantly higher relative abundances of the 
pathogenic Escherichia, Serratia, and Enterobacter, and lower relative abundances 
Lactobacillus, Lactoccus, Aerococcus and Bifi dobacteria. The disturbed coloniza-
tion pattern illustrated in this study was related to infant gastrointestinal symptoms 
and allergic reactions suggesting a role of elevated level of infl ammation. Another 
study conducted in infants with colic demonstrated an overall reduced diversity of 
the gut microbiota with an increase in Proteobacteria and decrease in Bacteroides in 
comparison to healthy infants (De Weerth et al.  2013 ). Although the causal role of 
microbial dysbiosis in these studies remains elusive, the association between distur-
bance in microbial composition and clinical phenotypes suggest a potential effect 
on bacterial interventions on behaviour and health. Indeed, in a placebo-controlled 
study of healthy women, brain changes in response to a fermented milk product 
containing four different probiotic interventions were assessed by functional mag-
netic resonance imaging. This study suggested a basic change in responsiveness to 
negative emotional stimuli (Tillisch et al.  2013 ). Brain imaging was also applied in 
another study conducted in patients with hepatic encephalopathy, mild cognitive 
disorders, and antibiotic treatment to alter the microbiota composition (Bajaj et al. 
 2013 ). Antibiotic treatment resulted in improved cognitive functions and changes in 
blood fatty acids metabolites that were suggested to be of microbial origin. Even 
though no changes in the microbial abundance were reported in the study, the results 
suggested that the improved cognition could be attributed to a shift from pathogenic 
to benefi cial metabolites.  
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15.8     Conclusions 

 It is now well established that “healthy” mammalian structure and function is signifi -
cantly dependent on its residing microbes. Data from animal studies clearly illus-
trated that unfavourable alterations in the body’s organ systems are linked with 
microbiota dysbiosis. However, we need a better understanding of the causative 
mechanisms whereby these interactions occur in order to provide novel avenues to 
rationally intervene in disease situations with either microbial or dietary interventions 
that aim to correct imbalance situations and thereby restore homeostasis. To date, 
limited information is available of how the fi ndings from animal experiments may 
translate to human in health and disease. The enormous amount of inter-individual 
variation observed in the microbial composition and its genome require the applica-
tion of very large studies to distinguish disease-associated changes, which renders the 
broad application of these trials very complicated within the human population. 
Moreover, the wide array of variation among individuals in terms of diet, genetics, 
environmental factors and sex-related differences, adds to the complexity of the 
human microbiome analysis. Practical and ethical concerns associated with the use of 
human volunteers represent another challenge that limits clinical intervention studies 
even with probiotics and if allowed, such studies are generally conducted only in 
primarily healthy individuals and not the human population that is most at risk. 

 The expanding repertoire of diseases associated with microbial dysbiosis urges 
the need to explore what our microbes do and not remain at a stage of describing who 
they are. Undoubtedly, the major advances in metagenomic and metabolomics tech-
nologies are continuing to help the reconstruction of metabolic pathways, which 
revealed that the microbiome functional diversity is by far less than its genetic diver-
sity, with respect to the inter-individual variation (Human Microbiome Project 
Consortium  2012 ). A better understanding of the functionality of the intestinal micro-
biota will not only help to design future probiotics but also to genetically engineer the 
microbiome in a way that produces microbial metabolites, which are benefi cial to the 
host or could be applied as nutraceuticals. Moreover, deciphering the dialogue among 
the microbial community would allow manipulating the community, particularly in 
susceptible individuals, in a way to remove those bacterial species representing a 
threat to the balanced microbial consortia, without necessarily being a pathogen.    
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