295 research outputs found

    Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function

    Get PDF
    Chronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and patients and chronic HBV patients display impaired IFNα production by pDC. Therefore, HBV and HBV-derived proteins were examined for their effect on human pDC in vitro. In addition, the in vitro findings were compared to the function of pDC derived from chronic HBV patients ex vivo. In contrast to other viruses, HBV did not activate pDC. Moreover, HBV and HBsAg abrogated CpG-A/TLR9-induced, but not Loxoribine/TLR7-induced, mTOR-mediated S6 phosphorylation, subsequent IRF7 phosphorylation and IFNα gene transcription. HBV/HBsAg also diminished upregulation of co-stimulatory molecules, production of TNFα, IP-10 and IL-6 and pDC-induced NK cell function, whereas TLR7-induced pDC function was hardly affected. In line, HBsAg preferentially bound to TLR9-triggered pDC demonstrating that once pDC are able to bind HBV/HBsAg, the virus exerts its immune regulatory effect. HBV not only directly interfered with pDC function, but also indirectly by interfering with monocyte-pDC interaction. Also HBeAg diminished pDC function to a certain extent, but via another unknown mechanism. Interestingly, patients with HBeAg-positive chronic hepatitis B displayed impaired CpG-induced IFNα production by pDC without significant alterations in Loxoribine-induced pDC function compared to HBeAg-negative patients and healthy controls. The lack of activation and the active inhibition of pDC by HBV may both contribute to HBV persistence. The finding that the interaction between pDC and HBV may change upon activation may aid in the identification of a scavenging receptor supporting immunosuppressive effects of HBV and also in the design of novel treatment strategies for chronic HBV

    Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection

    The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process

    Get PDF
    BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Observation of a New Excited Beauty Strange Baryon Decaying to Ξb- π+π-

    Get PDF
    The Ξb-π+π- invariant mass spectrum is investigated with an event sample of proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140 fb-1. The ground state Ξb- is reconstructed via its decays to J/ψΞ- and J/ψΛK-. A narrow resonance, labeled Ξb(6100)-, is observed at a Ξb-π+π- invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Ξb-) MeV, where the last uncertainty reflects the precision of the Ξb- baryon mass. The upper limit on the Ξb(6100)- natural width is determined to be 1.9 MeV at 95% confidence level. The low Ξb(6100)- signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξc baryon states, the new Ξb(6100)- resonance and its decay sequence are consistent with the orbitally excited Ξb- baryon, with spin and parity quantum numbers JP=3/2-

    Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ Leptons in pp collisions at sqrt[s]=13  TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections of the Higgs boson are presented, using the τ lepton decay channel. The differential cross sections are measured as functions of the Higgs boson transverse momentum, jet multiplicity, and transverse momentum of the leading jet in the event, if any. The analysis is performed using proton-proton collision data collected with the CMS detector at the LHC at a center-of-mass energy of 13  TeV and corresponding to an integrated luminosity of 138  fb^{-1}. These are the first differential measurements of the Higgs boson cross section in the final state of two τ leptons. In final states with a large jet multiplicity or with a Lorentz-boosted Higgs boson, these measurements constitute a significant improvement over measurements performed in other final states

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF
    • 

    corecore