121 research outputs found

    Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies

    Get PDF
    PublishedReviewJournalThis is the author accepted manuscript. The final version is freely available from Elsevier via the DOI in this record.© 2016 The Authors.Alzheimer's disease is a complex neurodegenerative disorder. A large number of genome-wide association studies have been performed, which have been supplemented more recently by the first epigenome-wide association studies, leading to the identification of a number of novel loci altered in disease. Twin studies have shown monozygotic twin discordance for Alzheimer's disease (Gatz et al., 2006), leading to the conclusion that a combination of genetic and epigenetic mechanisms is likely to be involved in disease etiology (Lunnon & Mill, 2013). This review focuses on identifying overlapping pathways between published genome-wide association studies and epigenome-wide association studies, highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial, and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic studies will aid our understanding of disease mechanisms and identify potential novel targets for pharmacological intervention.This work was funded by a grant from Bristol Research into Alzheimer's and Care of the Elderly and the Alzheimer's Society (grant AS-PG-14-038) to KL

    Blood methylomic signatures of presymptomatic dementia in elderly subjects with type 2 diabetes mellitus

    Get PDF
    Author version of article. The version of record is avilable from the publisher via doi: doi:10.1016/j.neurobiolaging.2014.12.023. Copyright © 2015 Elsevier Inc. All rights reserved.Available online 24 December 2014Due to an aging population, the incidence of dementia is steadily rising. The ability to identify early markers in blood, which appear before the onset of clinical symptoms is of considerable interest to allow early intervention, particularly in "high risk" groups such as those with type 2 diabetes. Here, we present a longitudinal study of genome-wide DNA methylation in whole blood from 18 elderly individuals with type 2 diabetes who developed presymptomatic dementia within an 18-month period following baseline assessment and 18 age-, sex-, and education-matched controls who maintained normal cognitive function. We identified a significant overlap in methylomic differences between groups at baseline and follow-up, with 8 CpG sites being consistently differentially methylated above our nominal significance threshold before symptoms at baseline and at 18 months follow up, after a diagnosis of presymptomatic dementia. Finally, we report a significant overlap between DNA methylation differences identified in converters, only after they develop symptoms of dementia, with differences at the same loci in blood samples from patients with clinically diagnosed Alzheimer's disease compared with unaffected control subjects.National Institute for Health Research (NIHR)Helen Bader FoundationLeroy Schecter FoundationBrightFocus Foundatio

    Transcriptomic changes in the frontal cortex associated with paternal age

    Get PDF
    Advanced paternal age is robustly associated with several human neuropsychiatric disorders, particularly autism. The precise mechanism(s) mediating the paternal age effect are not known, but they are thought to involve the accumulation of de novo (epi)genomic alterations. In this study we investigate differences in the frontal cortex transcriptome in a mouse model of advanced paternal age

    DNA methylation at the Igf2/H19 imprinting control region is associated with cerebellum mass in outbred mice

    Get PDF
    Background: Insulin-like growth factor 2 (Igf2) is a paternally expressed imprinted gene regulating fetal growth, playing an integral role in the development of many tissues including the brain. The parent-of-origin specific expression of Igf2 is largely controlled by allele-specific DNA methylation at CTCF-binding sites in the imprinting control region (ICR), located immediately upstream of the neighboring H19 gene. Previously we reported evidence of a negative correlation between DNA methylation in this region and cerebellum weight in humans. Results: We quantified cerebellar DNA methylation across all four CTCF binding sites spanning the murine Igf2/H19 ICR in an outbred population of Heterogeneous Stock (HS) mice (n = 48). We observe that DNA methylation at the second and third CTCF binding sites in the Igf2/H19 ICR shows a negative relationship with cerebellar mass, reflecting the association observed in human post-mortem cerebellum tissue. Conclusions: Given the important role of the cerebellum in motor control and cognition, and the link between structural cerebellar abnormalities and neuropsychiatric phenotypes, the identification of epigenetic factors associated with cerebellum growth and development may provide important insights about the etiology of psychiatric disorders

    Erratum to: Variation in 5-hydroxymethylcytosine across human cortex and cerebellum

    Get PDF
    This is the final version. Available from BMC via the DOI in this record.The article to which this is the erratum is in ORE at: http://hdl.handle.net/10871/2029

    Happiness and education: troubling students for their own contentment

    Get PDF
    Currently higher education strategies seem to concentrate on the expedient, developing skills that can secure employment in the world of work. Following Dreyfus and Spinosa (2003), this may have immediate advantages, but in totalising pedagogic practices it may restrict our openness to people and to our own contentment with ourselves. Valuable as this may be as a way to satisfy politico-economic policy imperatives, it strays from education as an edifying process where personal development represents, through the facing up to distress and despair, an unsettling of our developing identity and a negation of our immediate desire satisfaction. Such an unsettling is not intended to give pleasure or satisfaction in the normative way in which the imperative of happiness has been used in student satisfaction surveys or in the wider societal context that this totalisation represents (Ahmed 2010). What I propose for higher education is not a dominant priority to feed the happiness for others but a mission to personal contentment revealed through realising student potentialities to them and so recognising their limitations as part of seeking an attunement to contentment

    Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer's disease neuropathology

    Get PDF
    Introduction Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. Methods We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). Results We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10−18). Discussion We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation

    An epigenome-wide association study of Alzheimer's disease blood highlights robust DNA hypermethylation in the HOXB6 gene

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.A growing number of epigenome-wide association studies have demonstrated a role for DNA methylation in the brain in Alzheimer's disease. With the aim of exploring peripheral biomarker potential, we have examined DNA methylation patterns in whole blood collected from 284 individuals in the AddNeuroMed study, which included 89 nondemented controls, 86 patients with Alzheimer's disease, and 109 individuals with mild cognitive impairment, including 38 individuals who progressed to Alzheimer's disease within 1 year. We identified significant differentially methylated regions, including 12 adjacent hypermethylated probes in the HOXB6 gene in Alzheimer's disease, which we validated using pyrosequencing. Using weighted gene correlation network analysis, we identified comethylated modules of genes that were associated with key variables such as APOE genotype and diagnosis. In summary, this study represents the first large-scale epigenome-wide association study of Alzheimer's disease and mild cognitive impairment using blood. We highlight the differences in various loci and pathways in early disease, suggesting that these patterns relate to cognitive decline at an early stage.Alzheimer's Society, United KingdomMedical Research Council (MRC)NIH, United States, R01 grantAlzheimer's Research U

    Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue

    Get PDF
    Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex, temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors.We identified widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q), representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylation across a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic autism

    Molecular Variation at the SLC6A3 Locus Predicts Lifetime Risk of PTSD in the Detroit Neighborhood Health Study

    Get PDF
    Recent work suggests that the 9-repeat (9R) allele located in the 3′UTR VNTR of the SLC6A3 gene increases risk of posttraumatic stress disorder (PTSD). However, no study reporting this association to date has been based on population-based samples. Furthermore, no study of which we are aware has assessed the joint action of genetic and DNA methylation variation at SLC6A3 on risk of PTSD. In this study, we assessed whether molecular variation at SLC6A3 locus influences risk of PTSD. Participants (n = 320; 62 cases/258 controls) were drawn from an urban, community-based sample of predominantly African American Detroit adult residents, and included those who had completed a baseline telephone survey, had provided blood specimens, and had a homozygous genotype for either the 9R or 10R allele or a heterozygous 9R/10R genotype. The influence of DNA methylation variation in the SLC6A3 promoter locus was also assessed in a subset of participants with available methylation data (n = 83; 16 cases/67 controls). In the full analytic sample, 9R allele carriers had almost double the risk of lifetime PTSD compared to 10R/10R genotype carriers (OR = 1.98, 95% CI = 1.02–3.86), controlling for age, sex, race, socioeconomic status, number of traumas, smoking, and lifetime depression. In the subsample of participants with available methylation data, a significant (p = 0.008) interaction was observed whereby 9R allele carriers showed an increased risk of lifetime PTSD only in conjunction with high methylation in the SLC6A3 promoter locus, controlling for the same covariates. Our results confirm previous reports supporting a role for the 9R allele in increasing susceptibility to PTSD. They further extend these findings by providing preliminary evidence that a “double hit” model, including both a putatively reduced-function allele and high methylation in the promoter region, may more accurately capture molecular risk of PTSD at the SLC6A3 locus
    corecore