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Abstract Introduction: Alzheimer’s disease is a neurodegenerative disorder that is hypothesized to involve
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epigenetic dysregulation of gene expression in the brain.
Methods: We performed an epigenome-wide association study to identify differential DNA methyl-
ation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from
147 individuals, replicating our findings in two independent data sets (N 5 117 and 740).
Results: We identify elevated DNA methylation associated with neuropathology across a 48-kb re-
gion spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe
within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three co-
horts (P 5 3.11 ! 10218).
Discussion: We present robust evidence for elevated DNA methylation associated with Alzheimer’s
disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the
growing evidence highlighting a role for epigenetic variation in Alzheimer’s disease, implicating
the HOX gene family as a target for future investigation.
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1. Introduction

Alzheimer’s disease (AD), the most common form of de-
mentia, is a progressive neurodegenerative disorder that is
making an increasing contribution to the global burden of
iation.
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disease as the population ages [1]. AD pathology is charac-
terized by the accumulation of amyloid-b plaques and tau
tangles, ultimately leading to neuronal cell loss. The neuro-
degeneration associated with AD is believed to start many
decades before clinical onset; during this “preclinical”
phase, the plaque and tangle loads in the brain increase until
a person-specific threshold level is reached and behavioral
changes and cognitive impairment become manifest [2–4].
At present, there are no disease-modifying treatments avail-
able, with existing medications only alleviating certain
symptoms of AD. A better understanding of the underlying
mechanisms precipitating the onset and progression of pa-
thology is required to enable the design of new, more effec-
tive medications.

Increased knowledge about the functional complexity of
the genome has led to speculation about the role of epigenetic
variation in health and disease, including for neurodegenera-
tive diseases such as AD [5]. Two epigenome-wide associa-
tion studies (EWASs) of AD [6,7] recently identified
consistent patterns of DNA methylation associated with
neuropathology. Of particular interest was replicated
evidence for cortex-specific hypermethylation at multiple
CpG sites within ANK1, although differences at a number
of other loci were identified in one or both studies [8]. One
of the previously reported neuropathology-associated differ-
entially methylated positions (DMPs), cg22962123, is
located within the HOXA gene cluster on chromosome 7
[7]. Here, we present further evidence to support a role for
altered DNA methylation in AD-associated neuropathology
across an extensive region spanning the HOXA cluster.
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2. Methods

2.1. Samples and subjects

Our discovery (Mount Sinai) cohort consisted of brain tis-
sue from 147 individuals obtained from the Mount Sinai Alz-
heimer’s Disease and Schizophrenia Brain Bank (http://icahn.
mssm.edu/research/labs/neuropathology-and-brain-banking).
From the 147 donors, two cortical regions (prefrontal cortex
[PFC, N 5 144] and superior temporal gyrus [STG,
N5 142])were used for the purposes of the study.All samples
were dissected by trained specialists, snap-frozen and stored at
280�C. Further information about the samples is given in
Supplementary Table 1. Ethical approval for the project was
provided by theUniversity ofExeterMedical SchoolResearch
Ethics Committee under application number 14/02/041.
Genomic DNAwas isolated fromw100 mg of each dissected
brain region using a standard phenol-chloroform extraction
protocol and tested for purity and degradation before analysis.
For replication purposes,weusedpreviously publishedEWAS
data collected in two independent cohorts on the Illumina
Infinium Human Methylation 450K BeadChip (450K array):
(1) the “London” (Lunnon et al) cohort, consisting of PFC,
STG, entorhinal cortex, cerebellum (CER), and premortem
blood DNA methylation data from 117 individuals from the
FLA 5.5.0 DTD � JALZ2580_proof �
MRC QLondon Neurodegenerative Disease Brain Bank [6]
and (2) the “ROS/MAP” (De Jager et al) cohort, consisting
of PFC DNA methylation data from 740 individuals from
the Religious Orders Study and the Rush Memory and Aging
Project [7]. All samples were assigned a unique code number
for the experiment, which was independent of age, gender, or
diagnosis. This code was used throughout the experiment and
analysis.

2.2. Bisulfite treatment and Illumina Infinium BeadArray

Five hundred nanograms of genomic DNA was sodium
bisulfite converted using the EZ-DNA methylation kit
(Zymo Research, Orange, CA, USA), and DNA methylation
was subsequently quantified using the 450K array (Illumina,
USA) with arrays scanned using an Illumina iScan (software
version 3.3.28). Samples were processed by tissue and ran-
domized with respect to age and gender. The Illumina
450K array interrogates .485,000 probes covering 99% of
reference sequence (RefSeq) genes, with an average of 17
CpG sites per gene region (distributed across promoter,
50UTR Q, first exon, gene body, and 30UTR regions). It covers
96% of CpG islands, with additional coverage in island
shores and their flanking regions.

2.3. Microarray quality control and data normalization

Initial Qquality control of data was conducted using Ge-
nomeStudio (version 2011.1) to determine the status of
staining, extension, hybridization, target removal, sodium
bisulfite conversion, specificity, and nonpolymorphic and
negative controls. Probes previously reported to hybridize
to multiple genomic regions or containing a single-
nucleotide polymorphism at the single base extension site
were removed from subsequent analyses [9,10], in addition
to the 65 single-nucleotide polymorphisms used for sample
identification on the array (total probes removed 72,067).
For each probe, DNA methylation levels were indexed by
b values, that is, the ratio of the methylated signal divided
by the sum of the methylated and unmethylated signal (M/
[M 1 U]).

2.4. Data analysis

All computations and statistical analyses were performed
using R 3.0.2 and Bioconductor 2.13. Signal intensities were
imported into R using the methylumi package. Initial quality
control checks were performed using functions in the meth-
ylumi package to assess concordance between reported and
genotyped gender. Non-CpG single-nucleotide polymor-
phism probes on the array were also used to confirm that
both brain regions were sourced from the same individual
where expected. Data were preprocessed and quantile
normalized using the dasen function as part of the wateR-
melon package (wateRmelon_1.0.3) [11] within the R statis-
tical analysis environment and batch corrected using the
ComBat package [12]. Array data for each of the tissues
14 March 2018 � 3:32 pm � ce
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were normalized separately, and initial analyses were per-
formed separately by tissue. Full Illumina 450K array data
were available for the discovery (Mount Sinai) and London
(Lunnon et al) cohorts, and thus we were able to estimate
neuronal proportions in the data using the R package
CETS [13]. For the ROS/MAP (De Jager et al) cohort, we
only had Illumina 450K array data for probes in the HOXA
region and thus could not calculate neuronal proportions.
Therefore, the effects of age, gender, and cell type composi-
tion were regressed out of the discovery (Mount Sinai) and
London (Lunnon et al) cohorts, whereas the effects of age
and gender only were regressed out of the ROS/MAP (De Ja-
ger et al) cohort before subsequent analysis. For identifica-
tion of DMPs specifically altered with respect to
neuropathological measures of AD, we performed a quanti-
tative analysis in which samples were analyzed separately in
each brain region using linear regression models with
respect to Braak stage, with probes ranked according to
P values. The genic location of identified DMPs was anno-
tated by GREATannotation [14]. We have previously estab-
lished the multiple testing threshold (experiment-wide
significance) for EWAS data generated on the Illumina
450K array as P, 2.2! 1027 [15]. In brief, in this previous
study, 5000 permutations were performed repeating a linear
regression model for randomly selected groups of cases and
controls (N5 675). For each permutation, P values from the
EWASs were saved and the minimum identified. Across all
permutations, the fifth percentile was calculated to generate
the 5% of a significance threshold, which was deemed to be
P , 2.2 ! 1027. To identify differentially methylated re-
gions (DMRs), we identified spatially correlated P values
in our data using the Python module comb-p to group �3
spatially correlated CpGs in a 500-bp sliding window [16].
The coMET package was used to identify regional comethy-
lation patterns and regional EWAS results [17]. Fisher’s
Table 1

DMPs and DMRs associated with Braak stage in the PFC—The 10 DMPs in the

significance (P, 2.2! 1027) are shown, with annotation to chromosomal locatio

quantitative association model, and corrected DNAmethylation difference (D) from

the matched STG samples in the same cohort, and the matched brain regions (PF

significant difference. A list of the 78 top-ranked PFC DMPs at a more relaxed th

Probe Location

Illumina

annotation

GREAT annotation

Downstream Upstream

cg22867816 4:16081205 PROM1 FGFBP2 (2116347) PROM1 (1411

cg06977285 7:18127468 HDAC9 (2408457) PRPS1L1 (2599

cg05783384 2:218843735 RUFY4 (290242) TNS1 (2348

cg07349815 3:123751269 CCDC14 (270706) KALRN (2622

cg21806242 11:72532891 ATG16L2 ATG16L2 (17539) FCHSD2 (1320

cg03834767 7:90794392 CDK14 FZD1 (299390) CDK14 (1455

cg13935577 12:107974897 BTBD11 PWP1 (2104611) BTBD11 (1262

cg27078890 11:128457459 ETS1 ETS1 (223)

cg22962123 7:27153605 HOXA3 HOXA2 (211176) HOXA3 (1560

cg26199857 12:54764265 ZNF385A GPR84 (25995) ZNF385A (120,

Abbreviations: DMP, differentially methylated position; DMR, differentially m

FLA 5.5.0 DTD � JALZ2580_proof �
combined P value analysis was performed in the MetaDE
package [18], andmeta-analysis on correlation and case con-
trol status was performed with the meta package [19] within
R [20]. Data Qare available for the discovery (Mount Sinai)
cohort within GEO under accession number GSE80970.
The discovery (Mount Sinai) EWAS data set has been previ-
ously used to validate the top 100 DMPs nominated in a pre-
viously published EWAS [6]. As such, we have not sought to
replicate these top 100 DMPs in the present study.
3. Results

3.1. Hypermethylation associated with AD
neuropathology is observed in a region spanning 48 kb
across the HOXA gene cluster in the human cortex

Our primary analyses focused on matched PFC and STG
tissues from 147 individuals (Supplementary Table 1). We
used the 450K array to first quantify DNA methylation in
the PFC and identify DMPs associated with the Braak score,
a standardized measure of neurofibrillary tangle burden deter-
mined at autopsy, controlling for age, gender, and estimated
neuronal cell proportion. We identified 10 experiment-wide
significant (P , 2.2 ! 1027) DMPs (Table 1 and Fig. 1A),
with 78 DMPs associated with the Braak stage at a more
relaxed threshold of P , 1 ! 1025 (Supplementary
Table 2). Of these 78 DMPs, nine were located in the HOXA
gene cluster on chromosome 7, most notably in the vicinity
of HOXA3, with one HOXA DMP reaching experiment-wide
significance (cg22962123: P 5 1.2 ! 1027). We next used
a sliding window approach (comb-p [16]) to identify spatially
correlated regions of differential DNAmethylation associated
with neuropathology; Table 2 lists DMRs spanning at least
three probes with a window size of 500 bp and a Sidak-
corrected P value , .05. We identified six closely located
Q13PFC in the discovery (Mount Sinai) cohort that reached experiment-wide

n (hg19), up/downstream genes (from GREATannotation), P value from our

Braak score 0–VI (as a %). Also shown is the corresponding information in

C, STG) in the London (Lunnon et al) cohort, demonstrating a nominally

reshold of P , 1 ! 1025 is given in Supplementary Table 2

Discovery (Mount Sinai) cohort London (Lunnon et al) cohort

Association with Braak stage Association with Braak stage

PFC STG PFC STG

D P value D P value D P value D P value

8) 23.90 9.80E–09 22.04 5.21E–03 - - - -

83) 3.66 2.02E–08 2.68 1.84E–04 - - 1.88 7.65E–03

85) 7.42 4.46E–08 5.55 8.01E–05 3.26 7.76E–03 3.83 6.48E–04

58) 5.15 6.70E–08 - - 2.15 .02 1.83 7.35E–03

414) 8.51 7.02E–08 5.55 4.08E–04 5.22 3.86E–04 4.62 1.10E–03

681) 24.50 8.13E–08 - - - - - -

708) 9.11 8.45E–08 5.27 1.49E–03 4.02 5.10E–03 3.73 .02

4.85 9.86E–08 - - 2.09 .02 - -

8) 7.88 1.20E–07 5.12 2.78E–04 5.62 2.24E–05 5.18 5.21E–04

816) 5.43 1.87E–07 4.44 1.02E–03 2.62 .03 - -

ethylated region; PFC, prefrontal cortex; STG, superior temporal gyrus.
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Table 2

DMPs and DMRs associated with Braak stage in the PFC—DMRs significantly associated with Braak stage in the PFC. Shown are all significantly associated

regions (Sidak-corrected P value, .05) that contain three or more probes, with chromosomal location (hg19), up/downstream genes, number of probes in the

significant region, and Sidak-corrected P value

Chr Start End Gene annotation GREAT annotation

Number

of probes

�Sid�ak Q14-corrected

P value

Chr11 2,321,770 2,323,247 C11ORF21 TSPAN32 (2734) C11orf21 (1634) 27 3.20E–11

Chr7 27,153,580 27,153,944 HOXA3 HOXA2 (211332) HOXA3 (15452) 7 1.19E–09

Chr7 27,154,262 27,155,234 HOXA3 HOXA2 (212318) HOXA3 (14466) 16 4.31E–09

Chr7 27,169,957 27,171,401 HOXA4 HOXA4 (2261) 21 2.13E–08

Chr11 3,15,908 3,16,456 IFITM1 Closest IFITM1 (12329) IFITM3 (14868) 5 4.02E–08

Chr12 58,119,915 58,120,237 AGAP2 AGAP2 (111,953) OS9 (132,172) 6 1.22E–07

Chr7 27,183,133 27,184,853 HOXA5/HOXA-AS3 HOXA5 (2706) 42 2.19E–06

Chr5 78,985,425 78,985,900 CMYA5 CMYA5 (237) 10 2.31E–06

Chr19 10,736,006 10,736,448 SLC44A2 SLC44A2 (1293) 8 3.68E–06

Chr19 39,086,733 39,087,186 MAP4K1 MAP4K1 (121,604) RYR1 (1162490) 4 4.94E–06

Chr6 10,556,147 10,556,523 GCNT2 GCNT6 (277,658) GCNT2 (127,746) 3 2.93E–05

Chr3 194,014,592 194,015,171 GRM2 Closest CPN2 (157,175) HES1 (1160,948) 4 3.24E–05

Chr4 184,908,351 184,909,018 STOX2 STOX2 (182,176) ENPP6 (1230,429) 8 3.60E–05

Chr7 27,145,972 27,146,445 HOXA3 HOXA2 (23779) 5 4.11E–05

Chr17 46,388,390 46,388,465 SKAP1 SKAP1 (1119,124) SNX11 (1203,508) 3 4.77E–05

Chr17 74,475,240 74,475,402 RHBDF2 RHBDF2 (122,168) AANAT (125,888) 5 8.13E–05

Chr3 51,740,741 51,741,280 GRM2 GRM2 (275) 6 1.93E–04

Chr17 41,363,502 41,364,121 NBR1/TMEM106A TMEM106 A (282) 11 3.04E–04

Chr17 43,318,610 43,319,371 FMNL1 FMNL1 (119,835) SPATA32 (120,488) 6 4.51E–04

Chr7 158,281,410 158,281,613 PTPRN2 PTPRN2 (198,859) 3 4.66E–04

Chr13 43,565,901 43,566,496 EPSTI1 DNAJC15 (231,140) TNFSF11 (1417,910) 9 4.72E–04

Chr20 57,582,787 57,583,520 CTSZ Closest CTSZ (2852) 18 6.82E–04

Chr19 3,179,545 3,180,035 S1PR4 NCLN (25808) S1PR4 (11054) 4 7.59E–04

Chr22 37,608,611 37,608,819 SSTR3 Closest SSTR3 (2353) 3 8.84E–04

Chr13 113,698,408 113,699,016 MCF2L F7 (261,409) MCF2L (175,177) 13 9.15E–04

Chr9 34,457,129 34,457,500 FAM219A DNAI1 (21518) 4 1.05E–03

Chr17 75,315,081 75,315,567 SEPT9 TNRC6C (2685,813) SEPT9 (137,832) 8 1.28E–03

Chr16 29,674,618 29,675,214 SPN SPN (1336) 6 1.77E–03

Chr1 55,246,867 55,247,408 TTC22 PARS2 (216,951) DHCR24 (1105,753) 5 2.45E–03

Chr12 58,132,558 58,133,008 AGAP2 (2754) 3 3.00E–03

Chr7 27,138,712 27,138,974 HOTAIRM1 HOXA1 (23250) 4 3.19E–03

Chr16 67,686,832 67,687,392 RLTRP ACD (17534) RLTPR (18290) 4 3.59E–03

Chr12 58,129,855 58,130,410 AGAP2 AGAP2 (11896) OS9 (142,229) 4 4.42E–03

Chr17 19,314,299 19,314,618 RNF112 RNF112 (248) 6 9.80E–03

Chr15 40,583,227 40,583,422 PLCB2 PLCB2 (116,798) PAK6 (151,704) 3 0.01922

Chr15 38,988,533 38,988,860 C15ORF53 THBS1 (2884,597) RASGRP1 (2131,690) 4 0.01974

Chr16 1,482,952 1,483,192 CCDC154 Closest C16orf91 (23727) 3 0.02843

Abbreviations: DMP, differentially methylated position; DMR, differentially methylated region; PFC, prefrontal cortex; STG, superior temporal gyrus.
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DMRswithin theHOXA gene region, with themost significant
DMR in the HOXA region spanning seven probes in a 364-bp
region within intron 1 of HOXA3 (Fig. 1B; Sidak-corrected
P5 1.19! 1029). Of note, we observed an extended region
of neuropathology-associated hypermethylation spanning
number of probes associated with pathology. The red line indicates experiment-wi

more relaxed significance threshold (P5 1! 1025). (B) Using a sliding window ap

the HOXA gene cluster (Table 2), with the most significant region spanning 364 bp

methylation in late-stage AD (Braak stage VI) compared to healthy controls (Braa

lighted between gray dashed lines is a 48,754-bp region containing 208 probes cha

cate increased DNAmethylation in disease (�1% between Braak 0 and Braak VI),

Braak 0 and Braak VI), and black circles indicate DNA methylation differences,
DNA methylation difference (cg22962123) in the PFC (R 5 0.36, P 5 1.2 ! 1

P 5 2.78 ! 1024). (E) A quadrant plot of the effect size of the 208 probes iden

a significant correlation between brain regions (R5 0.76, P5 2.66! 10240). Abb

temporal gyrus.

FLA 5.5.0 DTD � JALZ2580_proof �
48,754 bp from upstream of the HOXA2 gene to the HOXA6
gene and covering 208 Illumina 450K array probes
(Fig. 1C). Given that DNA methylation at nearby CpG sites
can be highly correlated [21], we visualized comethylation
patterns between CpG sites within HOXA3 using coMET
de significance threshold (P5 2.2! 1027), with the green line indicating a

proach to identify differentially methylated regions, we identified six within

in the HOXA3 gene and containing seven CpG sites that showed increased

k stage 0). (C) A mini-Manhattan plot across the HOXA gene cluster. High-

racterized by neuropathology-associated hypermethylation. Red circles indi-

green circles indicate decreased DNAmethylation in disease (�1% between

1% between Braak 0 and Braak VI. (D) The site demonstrating the greatest

027) also showed a similar but weaker association in the STG (R 5 0.28,

tified in the PFC and their corresponding effect size in the STG highlights

reviations: AD, Alzheimer’s disease; PFC, prefrontal cortex; STG, superior
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Fig. 2. Replication Q12of neuropathology-associated DNA methylation differences across the HOXA gene cluster in additional study cohorts. (A) We identified a

consistent pattern of increased DNAmethylation across theHOXA cluster in the London (Lunnon et al) cohort in the PFC (B) with a strong correlation in effect
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[17] and observed highly correlated patterns of DNA methyl-
ation between CpG sites in this extended region
(Supplementary Fig. 1). We next sought to test whether
neuropathology-associated DNA methylation patterns across
this 48,754-bp region were specific to the PFC, using the Illu-
mina 450K array to profile STG samples from the same indi-
viduals. In total, seven probes in the region demonstrated
significantly increased DNA methylation after correcting for
208 tests (P , 2.4 ! 1024), with the top PFC DMP
(cg22962123) being similarly hypermethylated with respect
to Braak stage (Fig. 1D; PFC: R 5 0.36, P 5 1.2 ! 1027;
STG: R 5 0.28, P 5 2.78 ! 1024). There was an overall
consistent pattern of effect sizes across both brain regions
for the 208 probes in theHOXA neuropathology-associated re-
gion (Fig. 1E; R 5 0.76, P 5 2.66 ! 10240).
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3.2. Cortical neuropathology-associated
hypermethylation in HOXA3 is observed in independent
study cohorts

We next sought to replicate the observation of
neuropathology-associated hypermethylation across these
208 probes in two independent, previously published data
sets. First, we examined the “London” (Lunnon et al [6])
data set, comprising Illumina 450K array data generated us-
ing matched PFC, STG, entorhinal cortex, CER, and
premortem blood samples obtained from 117 donors
(described in [6]; Supplementary Table 1). We observed a
similar pattern of Braak-associated DNAmethylation across
this 208-probe region in the replication cohort in both the
PFC (Fig. 2A) and STG (Supplementary Fig. 2), with a high-
ly correlated effect size between cohorts in both brain re-
gions (PFC: Fig. 2B; R 5 0.74, P 5 2.27 ! 10237; STG:
Supplementary Fig. 3; R 5 0.68, P 5 1.87 ! 10229)—15
probes in the PFC and 6 probes in the STG reaching our cor-
rected significance threshold (P, 2.4! 1024). In contrast,
no probes in this region reached the corrected significance
threshold in the entorhinal cortex (Supplementary Fig. 4),
although the effect size was still correlated (R 5 0.41,
P 5 1.23 ! 1029). Similarly, no probes reached the signif-
icance threshold in the CER (Supplementary Fig. 5) or in
premortem whole blood collected in a subset (N 5 57) of
the same individuals (Supplementary Fig. 6), with no corre-
lation of effect sizes in either the CER (R5 0.03, P5 .639)
or blood (R 5 0.11, P 5 .138). This indicates that the
size across the 208 probes in the region between data sets (R5 0.74, P5 2.24! 10

PFC in the ROS/MAP (De Jager et al) cohort, (D) with a strong correlation in ef

P 5 2.39 ! 10248). (E) A Fisher’s combined P value meta-analysis of the PFC w

of increasedDNAmethylationwithmany probes in theHOXA3 region reaching exp

discovery cohort (cg22962123) was also the most significant probe in the meta-an

hypermethylation across all three cohorts. In plots (A) and (C) red circles indicate in

green circles indicate decreased DNA methylation in disease (�1% between Braa

,1% between Braak 0 and Braak VI. In plots (A), (C), and (E), the red line indic

indicates significance after correcting for 208 tests (P 5 2.4 ! 1024). In plot (F),

frontal cortex; STG, superior temporal gyrus.

FLA 5.5.0 DTD � JALZ2580_proof �
association may be specific to only particular regions of
the cortex.

We subsequently assessed this region in the “ROS/MAP”
(De Jager et al) data set comprising of 740 PFC samples pro-
filed on the Illumina 450K array (as described in Ref [7];
Supplementary Table 1) observing a similar pattern of
effects with highly significant neuropathology-associated
hypermethylation across probes in the HOXA genic region
(Fig. 2C), and a significant correlation of effect size with
the same 208 probes in the PFC in the discovery cohort
(Fig. 2D; R 5 0.80, P 5 2.39 ! 10248). A Fisher’s com-
bined P value of DNAmethylation differences across this re-
gion in all three PFC data sets confirmed a clearly defined
region of significant neuropathology-associated elevated
DNA methylation, with many individual DMPs passing
the threshold for experiment-wide significance (Fig. 2E),
and a consistent pattern of effects across the three cohorts
(Supplementary Fig. 7). The most significant DMP identi-
fied within the HOXA3 gene in our discovery cohort
(cg22962123; Table 1) was also the most significant
DMP in our Fisher’s combined P value analysis
(P 5 1 ! 10220). A meta-analysis comparing Braak 0 to
VI demonstrated increased DNA methylation with respect
to Braak stage across all cohorts in the PFC (Fig. 2F;
P5 3.11! 10218). Together, our data suggest that DNA hy-
permethylation across the extended HOXA gene region is
robustly associated with AD-related neuropathology in
both the PFC and STG, with the strongest effects in the vi-
cinity of HOXA3.
4. Discussion

We identified an extended region of elevated DNA
methylation in the HOXA gene cluster that is associated
with AD neuropathology, with consistent effects seen across
three independent postmortem brain sample cohorts.
Although one previous study had demonstrated differential
methylation at a single CpG within the HOXA gene cluster
[7] and another identified a DMR spanning seven CpG sites
[6], this represents the first study to illustrate that hyperme-
thylation in this region extends to 208 DMPs, spanning
approximately 48.7 Kb. Differential DNA methylation in
theHOXA gene cluster has been previously reported in blood
collected from Down syndrome individuals [22], which is
interesting given that many Down syndrome individuals
develop AD resulting from an additional copy of the APP
237). (C) A similar pattern of DNAmethylation changes was observed in the

fect size across the 208 probes in the region between data sets (R 5 0.80,

ith respect to Braak stage across all three cohorts showed striking patterns

eriment-wide significance. (F) Themost significant probe identified from the

alysis (P5 3.11! 10218) and characterized by neuropathology-associated

creased DNAmethylation in disease (�1% between Braak 0 and Braak VI),

k 0 and Braak VI), and black circles indicate DNA methylation differences

ates experiment-wide significance (P 5 2.2 ! 1027), whereas the blue line

red denotes the PFC and green denotes the STG. Abbreviations: PFC, pre-
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gene due to trisomy on chromosome 21. The Down syn-
drome study demonstrated differential DNA methylation
in 20 probes largely located within HOXA2. Of note, 17 of
these probes were significantly hypermethylated in the
PFC in our discovery (Mount Sinai) cohort. However,
none were differentially methylated in premortem blood in
the London (Lunnon et al) cohort. In the context of other
neurodegenerative disorders, one study that investigated mi-
croRNAs targeting HOX genes in Huntington’s disease
demonstrated increased levels of microRNAs related to
HOXA5, HOXA10, HOXA11, HOXA-11AS, HOXA13, and
HOTAIRM1 in the PFC in Huntington’s disease [23].
Although HOX genes encode potent transcription factors
that play a critical role in embryonic development [24], a
recent study in Drosophila also highlighted a potent protec-
tive function for HOX genes in neurons, implicating a role in
neuroprotection [25] Interestingly, this study also high-
lighted howHOX genes act to maintain expression of the an-
kyrin locus, an important observation given our previous
finding of altered DNA methylation in ANK1 in AD [6].
Indeed, to further explore this hypothesis, we examined
the correlation between DNA methylation levels at the
most significant HOX probe identified in the present study
(cg22962123) with the two ANK1 DMPs that we previously
identified to be associated with AD neuropathology
(cg11823178 and cg05066959) [6,7] in the PFC,
identifying a significant correlation with both ANK1
probes (cg11823178: R 5 0.24, P 5 5.15 ! 10210;
cg05066959: R 5 0.20, P 5 2.93 ! 1028). Although this
correlation could reflect the association between both
HOXA3 and ANK1 probes with the Braak stage, it could
highlight a novel physiological mechanism, particularly as
we still observed significant hypermethylation
(P 5 1.67 ! 1025) at our top HOXA probe (cg22962123),
when controlling for levels of DNA methylation in the top
ANK1 probe (cg11823178). Looking to the future,
analyses of gene expression levels should be performed to
facilitate the interpretation of the DNA methylation
differences we observe in HOXA. To conclude, this study
provides further evidence for altered epigenetic processes
in the pathophysiology of AD and suggests that further
work on the neuroprotective functions of HOX genes is
warranted.
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RESEARCH IN CONTEXT
Q

We performed an epigenome-wide association study to
identify differential DNA methylation associated with
Braak stage in a discovery cohort of 147 individuals. A
regional analysis identified six differentially methylated
regions, consisting of .3 differentially methylated po-
sitions with a Sidak-corrected P value, .05, within the
HOXA gene cluster. Further investigation highlighted a
region of neuropathology-associated hypermethylation
spanning .48 kb (208 probes) across the HOXA gene
cluster. HOX genes encode transcription factors impor-
tant in neural development. A recent study has provided
evidence thatHOX genes can maintain expression of the
ANK locus [25], which is particularly interesting given
that two previous epigenome-wide association studies
have provided robust evidence for differential DNA
methylation in the Alzheimer’s disease cortex in the
ANK1 gene [6,7]. A significant correlation of DNA
methylation was seen between the most significant
HOX probe identified in the present study with the two
ANK1 differentially methylated positions previously
identified [6,7], even when controlling for levels of
DNA methylation in ANK1.
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