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ABSTRACT 

 

Alzheimer’s disease is a complex neurodegenerative disorder that affected 5.2 million people in 

America in 2014
[1]

. A large number of genome-wide association studies (GWAS) have been 

performed, which have been supplemented more recently by the first epigenome-wide association 

studies (EWAS), leading to the identification of a number of novel loci altered in disease. Twin studies 

have shown monozygotic twin discordance for Alzheimer’s disease
[2]

, leading to the conclusion that a 

combination of genetic and epigenetic mechanisms are likely to be involved in disease etiology
[3]

. This 

review focuses on identifying overlapping pathways between published GWAS and EWAS studies, 

highlighting dysfunctional synaptic, lipid metabolism, plasma membrane/cytoskeleton, mitochondrial 

and immune cell activation pathways. Identifying common pathways altered in genetic and epigenetic 

studies will aid our understanding of disease mechanisms and identify potential novel targets for 

pharmacological intervention. 
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INTRODUCTION 

 

Dementia encompasses a group of chronic neurodegenerative diseases that affected an estimated 

44.4 million people worldwide in 2013. Due to an increasingly aging population, it is predicted that this 

figure will rise to an estimated 75.6 million by 2030, and 135.5 million by 2050
[4]

. The worldwide cost 

of dementia in predicted to be in excess of $1,000 billion by 2030
[5]

. Alzheimer’s disease (AD) is the 

most common form of dementia accounting for ~60-80% cases worldwide
[6]

. AD is characterized by 

the accumulation of extracellular amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles of 

hyperphosporylated tau, and widespread gliosis in the brain
[7]

. Despite the progress that has been 

made in understanding the cellular pathology of AD, available treatments only temporarily alleviate 

some symptoms and do not modify the underlying disease process. By the time an individual 

becomes symptomatic there is already considerable neuronal cell loss, plaque deposition and tangle 

burden within the brain, which can appear up to ten years before a clinical diagnosis is made
[8]

. 

Reflecting the growing public health and socioeconomic burden of AD there has been a year on year 

increase in the number of publications investigating the etiology of the disease (Figure 1) as 

researchers seek novel disease-modifying treatments. 
 

 

Although the neuropathology associated with AD has been well-described, little is known about the 

mechanisms underlying disease onset and progression. Quantitative genetic analyses demonstrated 

high heritability estimates (58%-79%) for AD
[9]

, and thus initial approaches to understanding etiology 

focused on uncovering a genetic contribution to disease susceptibility. In recent years, the recruitment 

of large cohorts and the relatively inexpensive cost of assessing genetic variation through genome-

wide association studies (GWAS) have allowed the identification of multiple variants associated with 

an elevated risk of developing AD. Many of these genes have also been robustly associated with AD 

via subsequent meta-analyses
[10-13]

 and, most recently, polygenic risk scores for AD have been 

developed
[14]

. Collectively, common SNPs are believed to only account for 33% of attributable risk
[15]

 

and the mechanism behind their action remains largely unknown. Exome-sequencing projects have 

also identified other variants e.g. TREM2
[16]

, which have a larger effect size, yet these are relatively 

rare. In recent years researchers have used epigenome-wide association studies (EWAS) to identify 

epigenetic changes in disease with the aim to elucidate additional mechanisms of pathology, which 

may provide a link to environmental factors.  

 

Epigenetic processes mediate the reversible regulation of gene expression, occurring independently 

of DNA sequence variation, acting principally through chemical modifications to DNA and 

nucleosomal histone proteins. Dynamic changes to the epigenome orchestrate a diverse range of 

important neurobiological and cognitive processes in the brain
[3]

. DNA methylation is the best 

characterized and most stable epigenetic modification which modulates the transcription of 

mammalian genomes. This is due to its ability to be interrogated using archived genomic DNA 

resources, which are the focus of most human epidemiological epigenetic research to date
[3]

. The 

methylation of a cytosine in a CpG dinucleotide by DNA methyltransferase (DNMT) enzymes, forms 5-



methylcytosine (5-mC), which can disrupt the cell’s transcriptional machinery by blocking the binding 

of transcription factors and attracting methyl-binding proteins that initiate chromatin compaction and 

bring about gene silencing
[17]

. The predominant focus to date is methylation within CpG Islands (CGIs) 

located within the 5’ promoters of many constitutively expressed housekeeping control genes. 

However recent data suggests that the relationship between DNA methylation and transcription may 

be more complex, with gene body methylation and non-CpG methylation often being associated with 

active gene expression
[18-21]

 and alternative splicing
[22, 23]

. The mechanisms involved in cytosine 

demethylation have also been studied; its demethylation by Ten-eleven translocation (TET) enzymes 

leads to a stepwise change in the cytosine side chain state, from methylated cytosine to 

hydroxymethylated cytosine (5-hmC), to formyl cytosine (5-fC), to carboxyl cytosine (5-caC) and 

finally back to unmodified cytosine by a yet unclassified enzyme/mechanism
[24]

. Each of these 

intermediates may have their own effect on gene transcription, splicing and subsequent protein 

function, and recent studies have shown 5-hmC to be at high levels in the brain
[25, 26]

, with variation 

across different anatomical regions
[27]

. Recent advances in genomic technology have allowed the first 

genome-scale studies assessing methylomic variation (EWAS) in AD. These studies have identified 

AD-associated DNA methylomic variation at numerous loci in the cortex, with consistent findings 

across multiple independent study cohorts, in addition to brain-region specific changes and blood 

DNA methylation signatures
[28, 29]

. In addition, a recent paper by Yu et al. combined genetic and 

epigenetic findings by examining DNA methylation patterns across genes that have previously been 

nominated by GWAS, identifying several overlapping loci
[30]

.  

 

Although GWAS and EWAS analyses have identified multiple genes associated with AD, the extent to 

which common pathways are shared in the findings across studies has not yet been explored. This 

review aims to integrate the most robust findings from GWAS, exome sequencing studies and EWAS 

performed to date in AD to highlight common molecular pathways, which could ultimately aid in the 

identification of novel pharmacological targets for the disease.  

 

 

METHODS 

 

Using the publically available online search – GWAS catalogue 

https://www.ebi.ac.uk/gwas/search?query=Alzheimer%27s%20disease#association and a P value cut 

off of P< 5x10
-8

, we identified 45 unique GWAS in AD totalling 144 SNPs. We then removed studies 

based on poor sample size (<1000 total samples) as well as removing those studies that included 

samples that were non-European in origin. Following the study selection, SNPs in intronic regions 

were removed from the analysis. After filtering for associated disease outcome measures, including 

the terms: “Dementia and core Alzheimer’s disease neuropathological changes”, “Alzheimer’s disease 

late onset”, “Alzheimer’s disease”, “Psychosis and Alzheimer’s disease”, “Alzheimer’s disease age of 

onset”, “Alzheimer’s disease biomarkers” and “Neurofibrillary tangles” we were left with 29 studies 

with 49 SNPs in 32 unique genes (Table 1A)[10-13, 31-48]. Four genes were identified from exome 

https://www.ebi.ac.uk/gwas/search?query=Alzheimer%27s%20disease#association


sequencing studies
[16, 49-51]

 by performing a literature search in PubMed using the phrases 

“Alzheimer’s disease” and “Exome sequencing” alone and in combination (Table 1B). Genes from 

EWAS were compiled from the 2014 publications by Lunnon et al. and De Jager et al. including 

probes with P<1x10
-7[28, 29]

. The 2012 publication by Bakulsk et al. was excluded from the analysis 

based on sample size
[52]

. Gene names were checked against quoted genomic location using the 

UCSC genome browser, only genes containing a probe of interest were included. The resulting gene 

list contained 48 unique genes that met the criteria for inclusion for our study (Table 2). Gene 

annotation for all genes of interest were taken from the Gene Ontology (GO) Consortium database, 

where available, and supplemented with information from the Entrez gene database. Two genes 

overlapped between GWAS and exome sequencing studies (TREM2, SORL1) and one gene 

overlapped between GWAS and EWAS (BIN1), bringing the total number of genes across all 

analyses to 81. 

 

PATHWAYS 

 

The 81 genes identified were compared in terms of their molecular/cellular function and grouped by 

pathways in which the identified genes operate. By taking significant loci across multiple study 

designs, we identified five common pathways altered at the genetic and/or epigenetic level in AD; 

plasma membrane and cytoskeletal processes, lipid homeostasis, synaptic signalling, immune cell 

processes and mitochondrial processes (Figure 2). The largest number of genes fell into the 

functional group plasma membrane and cytoskeletal processes (n=14), however this could be due to 

the fact that this is a proportionally larger pathway and is therefore more likely to contain an 

associated gene by chance. Of the pathways we have identified many of them have considerable 

overlap, for example lipid processes are intrinsically linked to the plasma membrane which is 

composed of phospholipids and a large percentage of cholesterol. To better understand the overlap 

between GWAS and EWAS nominated genes we looked at the cellular localization of genes from 

each type of study (Figure 3). The two largest localization groups (cellular membrane and nucleus) 

were consistent between methodologies. This would, to some degree, be expected as the majority of 

total proteins are involved in these locations and, in addition, current protein research has focused on 

these areas of the cell.  

  

To provide a more structured approach to pathway analysis, all 81 genes were entered into the 

PANTHER pathway analysis using the enrichment analysis from gene ontology consortium
[53]

. 

Fourteen biological process and four cellular component pathways were identified after passing 

Bonferroni correction. Most pathways reflected an interaction with Aβ or other AD pathology (Figure 

4). As the data for these genes was most likely collected from AD publications the resulting pathways 

are not unexpected, but are most likely to be limited.  

 

Plasma Membrane / Cytoskeleton 



This is the pathway which contained the largest number of associated genes from our analysis 

(n=14). The plasma membrane insulates the intracellular components from the extracellular 

environment, as well as catalyzing the transport of specific compounds, including nutrients and ions. 

Phospholipids that make up the membrane provide suitable fluidity and permeability. Alterations in the 

receptor function, membrane integrity, and membrane-dependent processes seen in AD have been 

reviewed by A. Farooqui et al
[54]

. The cytoskeleton provides contractility and couples biochemical 

responses with mechanical stresses in cells. It is vital in the movement of cellular machinery around 

the cell and to the membrane, as well as orchestrating the procedures needed for cellular movement 

and re-shaping, a function specifically important to the microglial cells of the brain in the response to 

inflammation
[55]

. For an overview of cell mechanics and the cytoskeleton see the review by Fletcher 

and Mullins 2010
[56]
. The inability of neurons to regulate calcium homeostasis through cell surface ion 

channels is an aspect of AD pathogenesis that appears to be intimately involved in the dysfunction 

and death of neurons
[57]

. Familial AD mutations in APP and PSEN1 support a role for perturbed 

calcium regulation in AD
[57]

. In addition, all of the enzymatic machinery responsible for the generation 

of the pathogenic Aβ plaque formation are plasma membrane based
[58]

; suggesting that damage to 

the plasma membrane may be a key factor in the Aβ pathology typical of AD.   

 

BIN1 has been nominated by both GWAS and EWAS, and in addition to its role in synaptic signalling, 

it also has a role in plasma membrane/cytoskeletal processes as it acts as an amphiphysin, which are 

known to promote caspase-independent apoptosis as well as play an important role in neuronal 

membrane organization
[59]

. Major learning defects and seizures have been linked to decreased 

expression of amphiphysins in murine brain
[60]

. In addition, altered expression of BIN1 has been 

shown in aging mouse models of AD
[61]

, providing further evidence for its role in AD pathology. 

Despite having no previous link to AD, ANK1 is now the one of the strongest reported candidate 

genes in AD EWAS, with strong links to cell structure. ANK1 was found to be hypermethylated in AD 

brain in two separate studies, including one with two independent validation cohorts
[28, 29]

. The 

differentially methylated region (DMR) in this gene spans at least six CpG sites, and was significantly 

associated with neuropathology in cortical regions, but not cerebellum or pre-mortem blood
[28]

, 

indicating tissue-specificity of the DMR to regions of neuropathology. ANK1 is found in multiple 

different isoforms, with some transcript variants specific to the brain
[62]

, and some evidence for 

differential splicing in AD
[28]

. As with BIN1, one of the main functions of ANK1 is compartmentalization 

and maintenance of the plasma membrane, and it is possible that the altered expression of this gene 

could lead to neuronal membrane dysfunction in AD
[28]

.  

 

The PVRL2 gene identified by GWAS encodes a single-pass type I membrane glycoprotein, which is 

one of the plasma membrane components of adherens junctions. Cell to cell connections brought 

about by adherens junctions are vital for effective neuronal signalling
[63]

. Interestingly, Marambaud et 

al. using various immunological based methods to investigate the PSEN1/γ-secretase system, where 

mutations are associated with familial AD, and showed it disrupted adherens junctions in AD
[63]

. 

Expression of PVRL2 has been detected in many organs including the brain, and it was later 



suggested it was associated with human longevity along with the AD GWAS nominated loci TOMM40 

and APOE
[64]. In addition, Elias-Sonnenschein et al., showed a significant correlation between the 

GWAS nominated locus MS4A4A and Aβ but not with tau pathology in AD
[65]

. Despite this, there is 

little-to-no research on the specific function of MS4A4A, although the gene product is associated with 

GO pathways that indicate it is an integral component of the plasma membrane. Two other genes 

within the MS4A gene cluster have also been nominated via GWAS; MS4A4E and MS4A6A
[11, 12]

. 

One recent study demonstrated that MS4A6A genotype and AD are associated with differential 

expression of isoform variants in blood and some brain regions
[66]

. 

 

 

Lipid Homeostasis   

Recent epidemiological, molecular and biochemical evidence has strengthened the hypothesis that 

cholesterol is a risk factor for AD, and although cholesterol homeostasis in the brain is largely 

unexplored, new findings strongly support the involvement of cholesterol in both the generation and 

deposition of Aβ
[67]

. Specifically, the quantity of cholesterol in the neuronal plasma membrane has 

been shown to make neurons more susceptible to the damage caused by Aβ in AD
[68]

. Other studies 

suggest that cholesterol acts directly on the amyloid cascade by promoting amyloidogenic processing 

of APP
[57]

. Interestingly, statins, which are a class of cholesterol-lowering drugs, decrease Aβ levels 

as well as plaque deposition in APP transgenic mouse models
[69]

. In addition high cholesterol levels 

and changes to cholesterol metabolism can increase the production of Aβ in cell culture and murine 

models
[67]

. Three of the most significant genes from AD GWAS are associated with lipid metabolism 

(APOE, APOC1, CLU). APOE was first identified as a risk factor for AD in 1993
[70]

, using immuno-

staining and genotyping analysis of 30 AD cases and 91 controls. Since 2006 and the wide 

application of GWAS to AD research
[71]

, the APOE polymorphism has been successfully replicated in 

several other studies
[31, 41, 72-75]

, making APOE the most robust gene linked to late-onset AD (LOAD) 

risk to date. The proportion of genetic variance for LOAD risk attributed to APOE genotype is 

estimated to be 10–20%
[76]

.
 
APOE is a 299 amino acid glycoprotein and the major protein component 

of very low-density lipoproteins (VLDL), the major apolipoprotein in the brain
[67]

, as well as having a 

functional role in cholesterol and triglyceride metabolism
[77]

. There are three APOE alleles that affect 

one’s risk of AD (2, 3 and 4), in addition to age of onset
[78]

. Of the three alleles; APOE 2 

demonstrates a protective effect, with an OR of 0.3 for possessing one 2 allele, whilst APOE 4 is 

associated with a higher LOAD risk, with an OR of 4.4 and 19.3 respectively for having one or two 

alleles
[79]

, as well as a younger median age of dementia onset
[79, 80]

. It has been suggested that the 

mutated APOE hinders clearance of soluble Aβ protein from the brain, leading to Aβ aggregation into 

fibrils. Furthermore, APOE has been shown to promote neurodegeneration by directing the toxic Aβ 

oligomers to synapses
[75]

. However, a recent PET study to measure Aβ in 602 individuals found that 

the ε4 allele is neither necessary, nor sufficient, for the development of AD pathology
[75]

.  

 

SORL1 has been identified in several studies of AD, using GWAS and exome sequencing methods, in 

addition Yu et al. found epigenetic changes in this gene
[30]

. It has many functional domains with 



different functions, including cargo transport, chaperone-like activity, signalling, and intracellular 

sorting
[81]

. When acting as a sorting receptor, the SORL1 gene product protects APP from being 

directed to the endosome where it would be cleaved by β-secretase, producing Aβ
[82]

. Further, SORL1 

can bind APOE, making SORL1 an important component in the pathophysiology of AD
[65]

. 

 

Synaptic Signalling  

Synaptic dysfunction is possibly the best-established of all the proposed pathological mechanisms for 

AD to date as it shows clear progression throughout the entire disease, including pre-symptomatic 

changes
[83]

. Early stages of AD are characterized by a 25-35% decrease in numerical density of 

synapse per cortical region
[84]

. There has also been evidence that the loss of synapses correlates with 

the soluble pool of cortical Aβ
[85]

. Stereological and biochemical analyses have shown that the 

reduction in synaptic density within AD brain correlates with cognitive defects better than the 

traditional hallmarks of Aβ plaques and neurofibrillary tangles
[83]

.  

 

We have identified four genes from GWAS and EWAS analyses of AD that have been linked to 

synaptic function. Two of these, BIN1 and PICALM, have functions in vesicular trafficking. 

Specifically, studies have shown that the BIN1 gene has roles in a number of specific pathways, 

including clathrin-mediated endocytosis (CME) which is an essential step in the intracellular trafficking 

of proteins and lipids such as nutrients, growth factors and neurotransmitters in synapses
[86-88]

. 

Originally identified as a tumour suppressor
[89]

, the BIN1 gene product is expressed most abundantly 

in brain and muscle
[90]

, with several alternatively spliced brain specific isoforms. BIN1 is one of the few 

genes that has been reproducibly identified by GWAS that does not fall near or within the APOE 

locus, in addition it is the only gene in our analysis to be significantly associated with AD in both 

GWAS and EWAS.  

 

Like BIN1, PICALM is also involved in CME
[87]

. PICALM directs the trafficking of the VAMP2 protein. 

VAMP2 is a SNARE protein that plays a key role in the fusion of vesicles to the presynaptic 

membrane allowing neurotransmitter release into the synapse, a process essential to neuronal 

function
[91]

. PICALM has been robustly identified as a risk factor for AD via GWAS
[10, 37]

, however, AD 

linked SNPs identified in PICALM may still be affected by APOE genotype, due to the large amount of 

attenuation seen when adjusted for APOE status
[45]

. Jun et al. have also reported this interaction 

observing that genotypes of PICALM conferred risk predominantly in APOE ε4–positive participants, 

providing strong evidence for a synergistic effect
[92]

. PICALM is also thought to affect amyloid 

precursor protein (APP) processing via endocytic pathways
[10]

.  

 

As a previously known risk factor gene for AD
[12]

, PTK2B was shown via network analyses to be 

linked to RHBDF2, ANK1 and RPL13, which were recently nominated from EWAS and providing 

further evidence for a role in AD pathology
[29]

. PTK2B has a number of roles including the induction of 

long term potentiation (LTP) of nerve cells, a central process of memory formation; cell migration and 

synaptic function
[12]

. 

http://medical-dictionary.thefreedictionary.com/neurofibrillary+tangles


 

 

Immune cell dysfunction (Astrocytes, Oligodendrocytes & Microglia) 

There is a widely accepted link between inflammation, the immune system and AD pathology
[93-97]

, 

more specifically the inflammation seen in AD has been proposed to exacerbate symptoms
[94]

. 

Microglia, which are the brain’s resident macrophages, have been shown to increase their viability by 

22.0~29.4% in response to fibular Aβ deposits of 0.2 to 5.0μM, which are commonly seen in AD. 

Oligomeric Aβ at a dose of 5.0μM results in cytotoxic microglia
[98]

 and ultimately leads to synaptic 

degeneration and neuronal death
[99]

. However, relatively few genes that have shown robust 

associations with AD have been directly linked with inflammation or immune functions. Most 

noteworthy a rare variant in TREM2, was recently recognised by a number of AD exome sequencing 

studies and GWAS
[16, 48, 100, 101]

. TREM2 encodes an innate immune system receptor on the surface of 

microglial cells within the brain. With the signalling counterpart DAP12 (also called TYROBP), TREM2 

forms a molecular complex that promotes phagocytosis of bacteria
[102]

. Work by Takahashi et al. has 

shown that TREM2 also has a role in the clearance of apoptotic neurones, due to its ability to 

increase migration and phagocytosis of microglia
[103]

. Recently one study demonstrated correlation in 

TREM2 and CD33 gene expression in AD
[104]

. As CD33 has also been nominated in various AD 

GWAS
[11, 13, 35]

 this provides further evidence for an overlap of AD gene pathways in disease. As 

described above, recent protein-protein interaction data also demonstrated that several EWAS 

nominated loci (ANK1, RHBDF2, PICLAM) have a functional link to PTK2B
[29]

. PTK2B is an AD risk 

factor gene that plays a key role in the signalling cascade involved in the modulation of microglial and 

infiltrating macrophage cell activation
[29]

.  

 

A further gene related to immune function is RHBDF2, identified by EWAS. Differentially methylated 

CpG sites close to the RHBDF2 gene were identified in two independent EWAS
[28, 29]

, with recent 

studies showing this increases RHBDF2 expression in AD brain
[29]

. RHBDF2 transports TNFα 

converting enzyme (TACE, also called ADAM17), which is necessary for the release of TNFα from the 

cell surface
[105]

. RHBDF2 absence in mice affects the release of TNFα from the cell surface
[106]

 and 

therefore impairs systemic immune responses to pathogens
[107]

, although the brain phenotype has yet 

to be researched.  

 

Mitochondrial Processes  

Mitochondrial dysfunction is one of the most prominent characteristics of AD, in both the brain and the 

periphery
[108-110]

, with TOMM40, one of the most robust genes identified from GWAS, associated with 

mitochondrial function. This gene is located approximately 2kb downstream from APOE and due to 

the locality of these two genes there is strong linkage disequilibrium (LD) for TOMM40 with the APOE 

locus
[111]

, hence many studies have failed to find an association of TOMM40 in AD after adjusting for 

APOE genotype[75, 112, 113]. However, one study reports TOMM40 as a possible risk factor of AD 

independent of APOE
[114]

. Specifically this study found a poly-T track mutation in TOMM40 that acts 

independently of APOE genotype, which has also seen been reported in another independent 



study
[115]

. In addition to increasing risk of developing AD, TOMM40 has also been linked to an earlier 

age of onset for the disease
[116]

. Other studies also suggest that TOMM40 provides an additional risk 

for AD, in addition to APOE
[117, 118]

. However, until the extent of the LD between TOMM40 and APOE 

is fully characterized, it will be difficult to pinpoint the exact effect the TOMM40 mutation has on LOAD 

pathogenesis.   

 

CLU has various nuclear and mitochondrial isoforms and is thought to regulate the rate of cell 

proliferation. CLU has been consistently replicated across many GWAS and holds a strong 

association with AD
[10, 36, 92, 112]

. The nuclear isoforms result in the promotion of apoptosis, whereas 

mitochondrial isoforms of CLU suppress BAX-dependent release of cytochrome c into the cytoplasm 

and inhibit apoptosis
[119]

. As an increased level of apoptosis in the brain is seen in AD, it could 

suggest a role of CLU mutations in pathogenesis
[120]

. SPG7 was identified by EWAS and encodes a 

mitochondrial metalloprotease protein. Mitochondrial proteases degrade misfolded and non-

assembled polypeptides. They also regulate the activity of specific substrates by mediating essential 

processing steps. These proteases have been hypothesized to play a role in neurodegenerative 

diseases by affecting neuronal maintenance and axonal function
[121]

. 

 

DISCUSSION 

 

The use of GWAS to identify common disease variants in AD has been at the forefront of research to 

understanding disease etiology for 10 years. More recently, the falling cost of exome and whole 

genome sequencing has identified rarer variants with a larger effect size. However, only three EWAS 

have been reported in AD to date
[28, 29, 52]

, which have solely focussed on DNA methylation,
 
although 

further studies are highly anticipated. Of all the genes identified from GWAS and EWAS in AD, only 

one locus was found to be overlapping between these two methodologies (BIN1).  

 

As with any pathway identification analysis there are caveats to our method. Some pathways are 

significantly larger than others containing more genes, therefore using this method we are more likely 

to find associated genes in these pathways over others.  Secondly, cellular pathways that contain a 

gene which is either genetically or epigenetically altered may still be able to function normally, as 

similar proteins could “step-in” to fulfil the lost functionality. Thirdly, in our analysis we did not filter our 

results based on loss of function SNPs or reduced expression, therefore despite the alterations in AD 

the genes we have identified may well have no change in their functionality. Fourthly, AD is 

characterised by neuronal cell loss and gliosis, and thus the findings from EWAS may simply 

represent an alteration in cellular abundance and although EWAS studies can apply cell specific 

corrections to methylation data
[122]

, this was not included in our analysis. The ability to look at single 

cell epigenetic profiles in disease would allow researchers to conclusively quantify changes that occur 

at both cellular and disease state levels, however single cell isolation in post mortem tissue, via laser 

capture microdissection (LCM) or florescent-assisted cell sorting (FACS), currently represents a 

considerable challenge to the field. Finally, epigenetic research in AD is still in its early stages with 



only two EWAS included in our analysis, this coupled with the fact that current methylation data is the 

sum of two different cytosine modifications (5-mC and 5-hmC) means we may have an 

underrepresentation of significant EWAS genes in AD. A further caveat of epigenetic studies 

compared to genetic studies is that causality is more difficult to establish and thus further studies 

examining the functional role of nominated EWAS loci are warranted. 

 

 

 

CONCLUSION 

 

Looking at the most-significant genetic and epigenetic findings in AD to date we have identified 

several pathways that require further exploration and could ultimately aid in our understanding of AD 

etiology. Well characterized clinical cohorts will also allow the identification of further rare variants of 

AD, whilst advances in methodologies are also allowing the identification of other epigenetic marks, 

such as histone modifications and other DNA modifications at single nucleotide resolution
[3, 123]

. A 

number of recent studies have demonstrated altered global levels of 5-hmC in AD brain
[124, 125]

, 

however studies to investigate loci-specific 5-hmC changes in AD are yet to be published. There is 

also the potential for further disease mechanisms to be identified from current studies as research 

moves to integrate GWAS and EWAS data in the same datasets to identify cis methylation 

quantitative trait loci (mQTLs). Ultimately integrating genomic and epigenomic data with other “omic” 

modalities will allow the identification of novel dysfunctional pathways in disease
[3]

.   
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