13 research outputs found

    The Cryptosporidium parvum Kinome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hundreds of millions of people are infected with cryptosporidiosis annually, with immunocompromised individuals suffering debilitating symptoms and children in socioeconomically challenged regions at risk of repeated infections. There is currently no effective drug available. In order to facilitate the pursuit of anti-cryptosporidiosis targets and compounds, our study spans the classification of the <it>Cryptosporidium parvum </it>kinome and the structural and biochemical characterization of representatives from the CDPK family and a MAP kinase.</p> <p>Results</p> <p>The <it>C</it>. <it>parvum </it>kinome comprises over 70 members, some of which may be promising drug targets. These <it>C. parvum </it>protein kinases include members in the AGC, Atypical, CaMK, CK1, CMGC, and TKL groups; however, almost 35% could only be classified as OPK (other protein kinases). In addition, about 25% of the kinases identified did not have any known orthologues outside of <it>Cryptosporidium spp</it>. Comparison of specific kinases with their <it>Plasmodium falciparum </it>and <it>Toxoplasma gondii </it>orthologues revealed some distinct characteristics within the <it>C. parvum </it>kinome, including potential targets and opportunities for drug design. Structural and biochemical analysis of 4 representatives of the CaMK group and a MAP kinase confirms features that may be exploited in inhibitor design. Indeed, screening <it>Cp</it>CDPK1 against a library of kinase inhibitors yielded a set of the pyrazolopyrimidine derivatives (PP1-derivatives) with IC<sub>50 </sub>values of < 10 nM. The binding of a PP1-derivative is further described by an inhibitor-bound crystal structure of <it>Cp</it>CDPK1. In addition, structural analysis of <it>Cp</it>CDPK4 identified an unprecedented Zn-finger within the CDPK kinase domain that may have implications for its regulation.</p> <p>Conclusions</p> <p>Identification and comparison of the <it>C. parvum </it>protein kinases against other parasitic kinases shows how orthologue- and family-based research can be used to facilitate characterization of promising drug targets and the search for new drugs.</p

    The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases: a review

    Full text link

    Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Get PDF
    Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP) exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG) has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG) is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG) has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA), maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER) was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony

    Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Get PDF
    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle

    Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites

    Get PDF
    This work was funded by grants from the Wellcome Trust (WT098051 and 079643/Z/06/Z) and the Medical Research Council (G0501670) to OB, a Wellcome Trust project grant to DB (WT094752), a Wellcome Trust Grant (WT093228) to TKS, a Marie Curie Fellowship (PIEF-GA-2008-220180) to SS, and a Marie Curie Fellowship (PIEF-GA-2009-253899) and an EMBO Long Term Fellowship (ALTF 45-2009) to MBr. C2 was synthesised and kindly provided by Katy Kettleborough and colleagues at MRC Technology through an MRC grant to DB (G10000779).Many critical events in the Plasmodium life cycle rely on the controlled release of Ca2+ from intracellular stores to activate stage-specific Ca2+-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca2+ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca2+ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca2+ effectors, PKG emerges as a unifying factor to control multiple cellular Ca2+ signals essential for malaria parasite development and transmission.Publisher PDFPeer reviewe
    corecore