3,202 research outputs found

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Methodology for in situ gas sampling, transport and laboratory analysis of gases from stranded cetaceans

    Get PDF
    Gas-bubble lesions were described in cetaceans stranded in spatio-temporal concordance with naval exercises using high-powered sonars. A behaviourally induced decompression sickness-like disease was proposed as a plausible causal mechanism, although these findings remain scientifically controversial. Investigations into the constituents of the gas bubbles in suspected gas embolism cases are highly desirable. We have found that vacuum tubes, insulin syringes and an aspirometer are reliable tools for in situ gas sampling, storage and transportation without appreciable loss of gas and without compromising the accuracy of the analysis. Gas analysis is conducted by gas chromatography in the laboratory. This methodology was successfully applied to a mass stranding of sperm whales, to a beaked whale stranded in spatial and temporal association with military exercises and to a cetacean chronic gas embolism case. Results from the freshest animals confirmed that bubbles were relatively free of gases associated with putrefaction and consisted predominantly of nitrogen

    Incidence, Predictors, and Significance of Abnormal Cardiac Enzyme Rise in Patients Treated With Bypass Surgery in the Arterial Revascularization Therapies Study (ARTS)

    Get PDF
    BACKGROUND: Although it has been suggested that elevation of CK-MB after percutaneous coronary intervention is associated with adverse clinical outcomes, limited data are available in the setting of coronary bypass grafting. The aim of the present study was to determine the incidence, predictors, and prognostic significance of CK-MB elevation following multivessel coronary bypass grafting (CABG). METHODS AND RESULTS: The population comprises 496 patients with multivessel coronary disease assigned to CABG in the Arterial Revascularization Therapies Study (ARTS). CK-MB was prospectively measured at 6, 12, and 18 hours after the procedure. Thirty-day and 1-year clinical follow-up were performed. Abnormal CK-MB elevation occurred in 61.9% of the patients. Patients with increased cardiac-enzyme levels after CABG were at increased risk of both death and repeat myocardial infarction within the first 30 days (P=0.001). CK-MB elevation was also independently related to late adverse outcome (P=0.009, OR=0.64). CONCLUSIONS: Increased concentrations of CK-MB, which are often dismissed as inconsequential in the setting of multivessel CABG, appear to occur very frequently and are associated with a significant increase in both repeat myocardial infarction and death beyond the immediate perioperative period

    Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1.

    Get PDF
    Tight binding of Gdown1 represses RNA polymerase II (Pol II) function in a manner that is reversed by Mediator, but the structural basis of these processes is unclear. Although Gdown1 is intrinsically disordered, its Pol II interacting domains were localized and shown to occlude transcription factor IIF (TFIIF) and transcription factor IIB (TFIIB) binding by perfect positioning on their Pol II interaction sites. Robust binding of Gdown1 to Pol II is established by cooperative interactions of a strong Pol II binding region and two weaker binding modulatory regions, thus providing a mechanism both for tight Pol II binding and transcription inhibition and for its reversal. In support of a physiological function for Gdown1 in transcription repression, Gdown1 co-localizes with Pol II in transcriptionally silent nuclei of early Drosophila embryos but re-localizes to the cytoplasm during zygotic genome activation. Our study reveals a self-inactivation through Gdown1 binding as a unique mode of repression in Pol II function

    Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin

    Get PDF
    Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours. Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs. Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin

    Acute wound management: revisiting the approach to assessment, irrigation, and closure considerations

    Get PDF
    Abstract Background As millions of emergency department (ED) visits each year include wound care, emergency care providers must remain experts in acute wound management. The variety of acute wounds presenting to the ED challenge the physician to select the most appropriate management to facilitate healing. A complete wound history along with anatomic and specific medical considerations for each patient provides the basis of decision making for wound management. It is essential to apply an evidence‐based approach and consider each wound individually in order to create the optimal conditions for wound healing. Aims A comprehensive evidence‐based approach to acute wound management is an essential skill set for any emergency physician or acute care practitioner. This review provides an overview of current evidence and addresses frequent pitfalls. Methods A systematic review of the literature for acute wound management was performed. Results A structured MEDLINE search was performed regarding acute wound management including established wound care guidelines. The data obtained provided the framework for evidence‐based recommendations and current best practices for wound care. Conclusion Acute wound management varies based on the wound location and characteristics. No single approach can be applied to all wounds; however, a systematic approach to acute wound care integrated with current best practices provides the framework for exceptional wound management

    Altered Eigenvector Centrality is Related to Local Resting-State Network Functional Connectivity in Patients with Longstanding Type 1 Diabetes Mellitus

    Get PDF
    Introduction: Longstanding type 1 diabetes (T1DM) is associated with microangiopathy and poorer cognition. In the brain, T1DM is related to increased functional resting-state network (RSN) connectivity in patients without, which was decreased in patients with clinically evident microangiopathy. Subcortical structure seems affected in both patient groups. How these localized alterations affect the hierarchy of the functional network in T1DM is unknown. Eigenvector centrality mapping (ECM) and degree centrality are graph theoretical methods that allow determining the relative importance (ECM) and connectedness (degree centrality) of regions within the whole-brain network hierarchy. Methods: Therefore, ECM and degree centrality of resting-state functional MRI-scans was compared between 51 patients with, 53 patients without proliferative retinopathy, and 49 controls, and associated with RSN connectivity, subcortical gray matter volume, and cognition. Results: In all patients versus controls, ECM and degree centrality were lower in the bilateral thalamus and the dorsal striatum, with lowest values in patients without proliferative retinopathy (PFWE<0.05). Increased ECM in this group versus patients with proliferative retinopathy was seen in the bilateral lateral occipital cortex, and in the right lateral cortex versus controls (PFWE<0.05). In all patients, ECM and degree centrality were related to altered visual, sensorimotor, and auditory and language RSN connectivity (PFWE0.05). Conclusion: Our findings suggest reorganization of the hierarchy of the cortical connectivity network in patients without proliferative retinopathy, which is lost with disease progression. Centrality seems sensitive to capture early T1DM-related functional connectivity alterations, but not disease progression

    Advanced model for the calculation of meshing forces in spur gear planetary transmissions

    Get PDF
    This paper presents a planar spur gear planetary transmission model, describing in great detail aspects such as the geometric definition of geometric overlaps and the contact forces calculation, thus facilitating the reproducibility of results by fellow researchers. The planetary model is based on a mesh model already used by the authors in the study of external gear ordinary transmissions. The model has been improved and extended to allow for the internal meshing simulation, taking into consideration three possible contact scenarios: involute–involute contact, and two types of involute-tip rounding arc contact. The 6 degrees of freedom system solved for a single couple of gears has been expanded to 6 + 3n degrees of freedom for a planetary transmission with n planets. Furthermore, the coupling of deformations through the gear bodies’ flexibility has been also implemented and assessed. A step-by-step integration of the planetary is presented, using two typical configurations, demonstrating the model capability for transmission simulation of a planetary with distinct pressure angles on each mesh. The model is also put to the test with the simulation of the transmission error of a real transmission system, including the effect of different levels of external torque. The model is assessed by means of quasi-static analyses, and the meshing stiffness values are compared with those provided by the literature.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology

    Drosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs

    Get PDF
    Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys3-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system

    DNA-PK-Dependent RPA2 Hyperphosphorylation Facilitates DNA Repair and Suppresses Sister Chromatid Exchange

    Get PDF
    Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability
    corecore