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Abstract  

Introduction: Longstanding type 1 diabetes (T1DM) is associated with microangiopathy 

and poorer cognition. In the brain, T1DM is related to increased functional resting-state 

network (RSN) connectivity in patients without, which was decreased in patients with 

clinically evident microangiopathy. Subcortical structure seems affected in both patient 

groups. How these localized alterations affect the hierarchy of the functional network in 

T1DM is unknown. Eigenvector centrality mapping (ECM) and degree centrality are 

graph theoretical methods that allow determining the relative importance (ECM) and 

connectedness (degree centrality) of regions within the whole-brain network hierarchy. 

Methods: Therefore, ECM and degree centrality of resting-state functional MRI-scans 

was compared between 51 patients with, 53 patients without proliferative retinopathy, 

and 49 controls, and associated with RSN connectivity, subcortical gray matter volume, 

and cognition.  

Results: In all patients versus controls, ECM and degree centrality were lower in the 

bilateral thalamus and the dorsal striatum, with lowest values in patients without 

proliferative retinopathy (PFWE<0.05). Increased ECM in this group versus patients with 

proliferative retinopathy was seen in the bilateral lateral occipital cortex, and in the right 

lateral cortex versus controls (PFWE<0.05). In all patients, ECM and degree centrality 

were related to altered visual, sensorimotor, and auditory and language RSN connectivity 

(PFWE<0.05), but not to subcortical gray matter volume or cognition (PFDR>0.05).  

Conclusion: Our findings suggest reorganization of the hierarchy of the cortical 

connectivity network in patients without proliferative retinopathy, which is lost with 

disease progression. Centrality seems sensitive to capture early T1DM-related functional 

connectivity alterations, but not disease progression.   
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Introduction 

Type 1 diabetes mellitus (T1DM) is a metabolic disorder in which exogenous insulin 

administration is vital due to the destruction of insulin producing pancreatic β-cells by 

autoimmune reactions. Adults with longstanding T1DM are at risk of developing 

peripheral microvascular complications, such as retinopathy. Long-term exposure to high 

blood glucose levels, or chronic hyperglycemic exposure, drives the development of 

retinopathy (Brownlee, 2005). Retinopathy is the most prevalent microvascular 

complication in type 1 diabetes and one of the leading causes of blindness in the western 

world (Ding and Wong, 2012). Retinopathy is a progressive complication that starts with 

small dot-like bleedings of small retinal vessels. With increasing severity of such 

bleedings, hypoxia triggers the release of hormones to promote revascularization of the 

retina (Ding and Wong, 2012). As these newly formed blood vessels are prone to leakage 

a vicious circle starts that will lead, if not interrupted, to blindness (Ding and Wong, 2012). 

This last stage is called proliferative retinopathy. A 25-year epidemiological study 

showed that virtually all T1DM patients developed retinopathy (97%), and that 

progression rate was 83% (Klein, et al., 2008). Forty-two percent of the patients 

developed proliferative retinopathy, for which laser coagulation is required to prevent 

blindness (Klein, et al., 2008). 

 Cognitively, studies have shown that T1DM is characterized by mental slowing, 

decreased mental flexibility, and lower attention (Brands, et al., 2005), and some research 

has suggested an increased risk of dementia (Smolina, et al., 2015). Adult T1DM has also 

been found to affect gray and white matter structure and functional connectivity (Kodl, et 

al., 2008; Musen, et al., 2006; Ryan, et al., 2015). While these alterations in cognitive 

functioning, and structure and function of the brain have been found in the general T1DM 

patient population, many studies have shown that patients who have developed 
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proliferative retinopathy show the most severe decrements and are most at risk to develop 

cerebral complications (Jacobson, et al., 2011; Ryan, et al., 2016; Wessels, et al., 2008). 

In our study, we have previously shown that T1DM patients with proliferative 

retinopathy showed decrements in cognitive functions depending on processing speed 

and attention in comparison with controls and their counterparts with uncomplicated 

T1DM, and decreased processing speed in patients without proliferative retinopathy 

relative to controls (van Duinkerken, et al., 2012). Although we did not demonstrate any 

alterations in cortical thickness, we did show lower subcortical gray matter volume in the 

thalamus, nucleus accumbens, putamen, and caudate nucleus (van Duinkerken, et al., 

2014). Both patients with and without proliferative retinopathy showed these alterations, 

albeit the effect size was largest in the group with retinopathy. Assessment of functional 

resting-state networks (RSNs) in this group using functional MRI showed a different 

pattern, where patients without complications had increased connectivity in the visual and 

sensorimotor networks compared to controls and their counterparts with proliferative 

retinopathy (van Duinkerken, et al., 2012). Contrary, patients with proliferative 

retinopathy showed lower connectivity than controls in the auditory and language, ventral 

attention and left frontal-parietal networks, where those without retinopathy had 

intermediate connectivity levels (van Duinkerken, et al., 2012). This shows that indeed 

patients with proliferative retinopathy in our study are most prone to have developed 

alterations in cognition and brain structure and functioning. Functional connectivity 

shows a different pattern of alterations than that of cognition or subcortical gray matter 

volume, and may suggest a form of functional reorganization of the local RSNs 

connectivity (van Duinkerken, et al., 2012), which is also found in children under 10 years 

of age with T1DM (Saggar, et al., 2017). 
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 However, by dividing the whole-brain functional network into smaller sub-

networks that are assumed to function independently and the impact of RSN connectivity 

and structural alterations on the entire brain network is disregarded. Furthermore, 

dividing the whole-brain functional network into smaller RSNs disregards the possibility 

that higher-order (cognitive) functions rely on multiple RSNs at the same time, i.e. that 

they need crosstalk between RSNs. Graph analytical methods have the advantage of 

analyzing the whole-brain network at once and can thus overcome the above-mentioned 

limitations, which may help in understanding cognitive deficits.  

Eigenvector centrality mapping (ECM) is a graph theoretical approach. The voxel-

based ECM calculation assigns higher ECM values to voxels that are connected to more 

central voxels (Binnewijzend, et al., 2014; Lohmann, et al., 2010; Wink, et al., 2012). In 

other words, it calculates centrality of a node, which can be a brain region or a voxel, by 

adding up the centralities of its neighbors. Higher scores then indicate a more central or 

important role of the node in the functional network, as the node is connected to regions 

which themselves have higher centrality values. Except for considering the functional 

network as a whole and being easily computable, another advantage of ECM is that it is 

relatively insensitive to physiological effects, such as movement artifacts (Lohmann, et 

al., 2010; Wink, et al., 2012), which avoids the introduction of potential artifacts in the 

data (Power, et al., 2015). The difference between degree centrality, which integrates the 

number (or strengths) of connections a node receives, and eigenvector centrality, which 

integrates the centralities of a node’s neighbors, is that eigenvector centrality is more 

sensitive to different levels of hierarchical networks. In type 2 diabetes, albeit being a 

fundamentally different disease related to obesity, insulin resistance and pancreatic β-cell 

failure, degree centrality was lower in the lingual gyrus, but higher in the insula and 

anterior cingulate cortex when compared with controls (Cui, et al., 2016). 
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Graph theoretical assessment of the functional network in T1DM has not been 

published before. Therefore, we first studied the functional whole-brain network using 

voxel-wise ECM and degree centrality in adult T1DM patients with and without 

proliferative retinopathy compared with controls. Based on the results of our previous 

resting-state RSN connectivity analysis, alterations were hypothesized strongest in 

patients without proliferative retinopathy. Next, in all patients, we aimed at identifying 

the relationship between potential alterations in ECM and degree centrality and 

previously observed cognitive decrements, altered RSN functional connectivity, and 

lower subcortical volume (van Duinkerken, et al., 2012; van Duinkerken, et al., 2014). 

To this end, we correlated ECM and degree centrality values with cognitive performance 

on the domains of general cognitive ability, information processing speed, and attention. 

The RSN functional connectivity of the sensorimotor, secondary visual, ventral attention, 

left frontal-parietal, and auditory and language processing networks were included, as 

well as volume of the bilateral thalamus, putamen, caudate nucleus, and nucleus 

accumbens. As we did not observe and differences in cortical thickness, this was not 

included in the correlation analysis. Lastly, in all patients, the clinical relevance of ECM 

and degree centrality was determined by exploring associations with diabetes-specific 

and demographic factors.  
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Materials and Methods 

Participants 

This study was conducted in accordance with the Declaration of Helsinki and approved 

by the medical ethics committee of the VU University Medical Center. Written informed 

consent was obtained from all participants. One hundred and four participants with T1DM 

for at least 10 years were included, as well as 51 matched non-diabetes controls. Inclusion 

criteria were right-handedness, mastery of the Dutch language and age between 18-56 

years. Exclusion criteria included cerebro- or cardiovascular disease, MRI-

contraindications, such as pregnancy, centrally acting medication use, (treatment of) 

psychiatric disorders, history of or current alcohol (men>21; women>14 units a week) or 

drug use, head trauma, and, for controls only, hypertension. Hypoglycemic episodes 24-

hours preceding examination resulted in rescheduling of the appointment. During the 

study days, blood glucose levels of patients had to range between 4-15 mmol/l (72-270 

mg/dl). Glucose levels were checked regularly and corrected if necessary (van 

Duinkerken, et al., 2012). 

 

Biomedical and anthropometric measures 

In all participants, after a 15-minute rest, blood pressure was measured 3 times with 5 

minute intervals at the left arm, while in a seated position. Hypertension was defined as 

a mean systolic blood pressure ≥140 mmHg, a mean diastolic blood pressure ≥90 mmHg, 

or the use of antihypertensive drugs. Blood was drawn for routine analysis, including 

glycated hemoglobin (HbA1c). Depressive symptoms were evaluated with the Center for 

Epidemiological Studies Depression scale (CES-D; (Radloff, 1977)). In patients, lifetime 

severe hypoglycemic events were self-reported, based on standardized criteria (The 

Diabetes Control and Complications Trial Research Group, 1996).  
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Microvascular complications 

In patients, retinopathy status was ascertained by fundus photography, rated according to 

the EURODIAB classification (Aldington, et al., 1995), albuminuria status was 

determined as a 24-hour albumin:creatinine ratio >2.5 mg/mmol for men or >3.5 

mg/mmol for women, and neuropathy status was ascertained by the most recent annual 

check-up for neuropathy, which is incorporated into the medical records (n=92), or self-

report if not available (n=12) (van Duinkerken, et al., 2012). Patients were included if 

they had proliferative retinopathy (EURODIAB level 4 or 5), which could be 

accompanied by albuminuria and/or neuropathy, or if they were free of clinically manifest 

microvascular complications. 

 

MRI acquisition 

Patients underwent MRI-scans on a 1.5T Siemens Sonata (Erlangen, Germany) MR-

system using an 8-channel phased-array head coil. Here, we used a 202 volume EPI-based 

functional MRI sequence ([fMRI] repetition time 2850 ms; echo time 60 ms; flip angle 

900; 211x211 mm2 field-of-view; isotropic 3.3 mm voxels; 36 axial slices), and a T1-

based magnetization prepared rapid acquisition gradient echo ([MPRAGE], repetition 

time 2700 ms; echo time 5.17 ms; inversion time 950 ms; flip angle 80; 256x256 mm2 

field-of-view; 1.0x1.0x1.5 mm voxel size; 160 contiguous coronal partitions). Functional 

MRI scanning occurred in a darkened room, and subjects were asked to keep their eyes 

closed and not think of anything particular nor fall asleep.   

 

Functional MRI preprocessing 

For preprocessing of the fMRI images, the MELODIC pipeline of FSL5.0.8 was used 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; which has been described in detail in (van 
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Duinkerken, et al., 2012)). In short, the first 2 volumes were discarded to reach a steady 

state of BOLD signal. The remaining volumes were brain extracted, slice timing and 

motion corrected, smoothed with a 5 mm Gaussian kernel, and high-pass filtered with a 

cut-off of 150 seconds. Next, volumes were registered to the subject’s high-resolution 

T1-MPRAGE scan by using affine boundary based registration, and non-linearly 

registered to MNI152 standard space with a 10 mm warp resolution and resampling 

resolution of 4 mm isotropic. To further correct for motion scrubbing was applied. First, 

based on the raw fMRI-scans, FSL’s Motion Outliers script calculated the volumes to be 

scrubbed based on the Frame-wise Displacement (FD) and DVARS (D referring to 

temporal derivative of time-course and VARS to the root mean squared variance over 

voxels) combined (Power, et al., 2012). Next, the 3dTproject script of AFNI 

(https://afni.nimh.nih.gov/afni/) was used to scrub the preprocessed fMRI-scans in 4 mm 

standard space. As removing volumes leads to fMRI-scans of different length which can 

potentially confound between-group analyses (Power, et al., 2015), we interpolated the 

values of the to-be scrubbed volumes from the neighboring volumes in time. This way, 

volumes with high motion were censored but not removed.  

 

Group specific Eigenvector Centrality Mapping mask 

A group-specific mask was made excluding white matter and cerebrospinal fluid voxels, 

to determine ECM values only in gray matter voxels. First, for all participants gray matter 

masks obtained by FSL-SIENAX (Smith, et al., 2002) were merged with the participants’ 

binarized subcortical segmentation from FSL-FIRST (Patenaude, et al., 2011), and 

subsequently binarized. They were individually non-linearly registered into 4 mm 

standard space using the personal warp-volume obtained from the MELODIC pipeline, 

summed and thresholded at >25% to obtain a gray matter mask with a relatively thick 
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cortex. To make sure that the centrality networks were of the same size in everyone all 

fMRI-volumes in 4 mm MNI-space were merged into a single volume, binarized and 

summed together. This volume was subsequently thresholded at 153 (100%), only 

including voxels covered in every participant. Lastly, this fMRI-mask was multiplied by 

the gray matter mask, generating a group specific mask including only gray matter voxels 

with 100% fMRI coverage (Figure 1). In doing so equal network size in all participants 

was ensured, preventing a possible influence of size of the functional network on the 

between-group results (van Wijk, et al., 2010). 

 

Eigenvector Centrality Mapping 

With ECM, centrality (i.e. relative importance) of each voxel in the functional network is 

calculated (Lohmann, et al., 2010). The fast-ECM software 

(github.com/amwink/bias/tree/master/matlab/fastECM) that was used in this study is 

faster and computationally more efficient, as it computes matrix-vector products without 

having to compute or store the connectivity matrix. Technical details of the fast-ECM 

software can be found elsewhere (Wink, et al., 2012). In brief, eigenvector centrality 

considers a node more central if it is connected to more central nodes. This property 

corresponds to having a high coefficient in the dominant eigenvector of the connections 

matrix. Fast ECM uses an efficient formulation of power iteration to find the dominant 

eigenvector of the connections matrix: 

[1] for data Y
[NxT]

, voxel-wise correlations can be computed as  

  M
[NxN]

 = Y
[NxT]

 * Y’
[TxN]

 

 here N = number of voxels, T = number of time points 

[2] power iteration uses  

  c(new)
[Nx1]

 = M
[NxN]

 * c(previous)
[Nx1]

,  
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 which can be re-formulated as  

  c(new)
[Nx1]

 = Y
[NxT]

 * ( Y’
[TxN]

 * c(previous)
[Nx1]

 )
[Tx1]

 

 

In this formulation, power iteration requires only a [Tx1] extra storage instead of [NxN]. 

As T < N, this is a great improvement in efficiency (Wink, et al., 2012). The connectivity 

matrix M is calculated as C+1 (where C is the voxelwise correlation matrix), in which 

negative correlations range from 0 to 1 and positive correlations from 1 to 2, without 

the application of a threshold. As we used a group specific common mask and the fact 

that ECM does not rely on thresholding or binarizing of the matrix, all subjects’ networks 

were of the same size. These individual eigenvector centrality maps in MNI152 standard 

space were then temporally concatenated into a single 4D-file for statistical analysis. 

 

Degree Centrality Mapping 

Degree centrality was approximated using node strength, which integrates the connection 

strengths of each node. If eigenvector centrality is computed with power iteration and the 

estimate is initialized with a uniform vector, this corresponds to the result of the first 

iteration. As the connectivity matrices from the ECM analysis are C+1 (for voxelwise 

correlation matrices C), the strength of the connections in this centrality measure per 

voxel is the sum of all correlations with that voxel plus a constant. Degree centrality 

maps were then normalized by dividing the maps through the mean of the map that was 

calculated using FSL-stats. By normalizing the degree centrality maps they became more 

comparable with ECM, which is also a normalized measure, and it filters out potential 

global effects of disease (Eijlers, et al., 2017; Finn, et al., 2015). 

 

Neuropsychological assessment 
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Intelligence was estimated using the Dutch version of the National Adult Reading Test. 

The following tests were used to measure performance on the domains of memory, 

information processing speed, executive functions, attention, motor and psychomotor 

speed: Rey Auditory Verbal Learning Test, Wechsler Adult Intelligence Scale, 3rd 

edition revised Digit Span and Symbol Substitution Test, Stroop Color-Word Test, 

Concept Shifting Task, Simple Auditory and Visual Reaction Time Tests, Computerized 

Visual Searching Task, D2-test, Wisconsin Cart Sorting Test, Category Word Fluency 

Task, Tapping Test and Letter Digit Modality Test. General cognitive ability was based 

on the average of all tests (see (van Duinkerken, et al., 2016) for tests). Test scores were 

normalized based on the mean and standard deviation of controls and, if necessary, 

transformed so that higher z-values indicated better performance. 

 

RSN functional connectivity 

Independent Component Analysis (ICA) on the resting-state fMRI data of this group 

identified 10 RSNs as we previously published (van Duinkerken, et al., 2012). After ICA, 

dual-regression was used which created personalized maps of each network for each 

subject by first creating the average time course within each network per subjects and 

then linearly modeling the group-based network onto the subject’s fMRI-scan. Lastly, the 

personalized time-course is regressed back onto the subject’s fMRI-scan (Beckmann, et 

al., 2009).  

 

Subcortical gray matter volume 

As we did not find any cortical structural alterations in this group, only subcortical volume 

was used in the current study. Using the FIRST pipeline of FSL, volume of the bilateral 

thalamus, caudate nucleus, putamen, pallidum, hippocampus, nucleus accumbens, and 
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amygdala was obtained, in native T1-space (Patenaude, et al., 2011; van Duinkerken, et 

al., 2014). Correction for head size is necessary to allow for group comparisons. This 

correction was performed by multiplying all uncorrected volumes with the V-scaling 

factor derived from the FSL-SIENAX pipeline (Smith, et al., 2002). This factor is 

calculated through affine registering the skull image from FSL-SIENAX to MNI152 

standard space (Jenkinson, et al., 2002; Jenkinson and Smith, 2001), and thus represents 

the scaling factor by which uncorrected volumes are multiplied to correct for differences 

in head size.  

 

Statistical analysis 

Subject characteristics were analyzed using One-Way ANOVA, Kruskal-Wallis test in 

the case of non-normality, or χ2-tests for categorical variables. Normality was checked 

using the Kolmogorov-Smirnov test and visual inspection of the histogram. 

 ECM and degree centrality values were first compared between all patients as 1 

group and controls using a 2-tailed t-test permutation-based statistical comparison 

(10.000 permutations; FSL-PALM [Permutation Analysis of Linear Models] version 

alpha101 (Winkler, et al., 2014; Winkler, et al., 2016)) with Threshold Free Cluster 

Enhancement (TFCE) settings, in which no minimum cluster size needs to be defined. In 

case of significant differences, both patient groups were compared with controls and to 

each other, as post-hoc testing. Correlations between centrality and RSN connectivity 

were calculated at a voxel-level using PALM, using the same settings as mentioned above. 

These analyses were corrected for age, sex, systolic blood pressure and depressive 

symptoms. For all voxel-based analyses Family Wise Error (FWE) correction for multiple 

comparisons was applied. A PFWE<0.05 was considered statistically significant.  
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In all patients, potential clinical relevance of altered centrality was studied by 

correlating centrality measures to age, sex, diabetes duration, albumin:creatinine ratio, 

HbA1c, body mass index, and systolic blood pressure. Furthermore, in all patients linear 

regression was used to determine correlations between ECM and cognition and 

subcortical gray matter volume. In order to account for multiple testing, we corrected the 

P-values of all correlations using the False Discovery Rate (FDR).  

A P<0.05 (FWE and FDR corrected) was considered to be statistically significant. 

All statistical tests were performed using IBM-SPSS 20 (IBM-SPSS, Chicago, IL), R 

(version 3.3.2, www.R-project.org), and FSL-PALM. 
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Results 

Patient characteristics 

Due to artifacts induced by braces, fMRI-scans of 2 control subjects could not be used, 

leaving 49 controls. As can be found in Table 1, all T1DM patients were on average 5 

years older than the control participants (P=0.009). They also had higher systolic blood 

pressure and reported more depressive symptoms (all P<0.05). Patients with proliferative 

retinopathy drove these differences. Patients had, on average, a disease duration of 28 

years with an early adolescent disease onset, with those patients with proliferative 

retinopathy having the longest disease duration and earliest onset age (all P<0.05). In all 

T1DM patients a median of 9 fMRI-volumes needed to be scrubbed, in the control group 

this was 10 (P=0.729). After scrubbing the relative displacement was on average below 

0.03 mm in all groups, and was not statistically significantly different between the groups 

(P>0.05).  

 

Eigenvector centrality mapping 

Figure 1 shows the mean ECM values per group. The size of the ECM network was 

15.696 voxels. All FSL-PALM analyses were corrected for age, sex, systolic blood 

pressure, depressive symptoms, and multiple comparisons using TFCE and FWE. As can 

be found in the first column of Figure 2, all patients compared with controls showed 

significantly lower ECM values in a cluster comprising the bilateral thalamus, putamen, 

and caudate nucleus (PFWE<0.05), without any areas of increased ECM. Post-hoc group 

comparisons showed this effect was driven by patients without proliferative retinopathy. 

Relative to controls, this group showed lower ECM in the same subcortical areas, 

pallidum, cerebellum and brain stem, and increased ECM in the right cuneus and occipital 

fusiform gyrus (First column Figure 2; PFWE<0.05). Patients with proliferative 
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retinopathy showed no differences with healthy controls. Directly comparing both patient 

groups, ECM was lowest in patients without versus with proliferative retinopathy in the 

brainstem, cerebellum, putamen, and thalamus. Higher ECM values in the group with 

uncomplicated T1DM were found in the bilateral occipital cortex and left superior 

temporal gyrus (First column Figure 2; PFWE<0.05). Mean values of these clusters can be 

found in Table 2. As a difference in age, diabetes duration and disease onset age between 

the groups could affect the results, the analyses were repeated with groups matched for 

these factors. Results remained similar to the original analysis (First column Figure 2). 

 

Normalized degree centrality 

Mean degree centrality values are provided in Figure 1. As can be seen in the third column 

of Figure 2, degree centrality was lower in all T1DM patients relative to controls in the 

bilateral caudate nucleus, putamen, and thalamus (PFWE<0.05), although results are 

spatially more widespread in the left hemisphere. This effect was driven by the patients 

without proliferative retinopathy, who had, in comparison with controls, lower degree 

centrality in the same regions (PFWE<0.05). There were no differences between patients 

with proliferative retinopathy and controls or between both patients groups, and results 

were similar in the matched analysis. No increased degree centrality was observed. 

 

Recalculating centrality after removal of low quality fMRI-signal 

It is possible that fMRI-signal decreases in quality at the extremities of the brain, such as 

the subcortical, cerebellar and brain stem region, which are the regions of altered 

centrality in this T1DM group. To eliminate low quality signal the individual raw fMRI-

scans were thresholded at 25% of the robust range of the non-zero voxels, leaving only 

high-quality signal. The subsequent gray matter mask was created as described in the 
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Materials and Methods section. The second and forth column of Figure 2 show that low 

quality signal was mainly present in the temporal and frontal regions, and to a lesser 

extend in the brain stem. Recalculation of ECM and degree centrality and rerunning the 

statistical analyses did not show any significant changes in the results (2nd and 4th column 

Figure 2). 

 

Correlations between centrality, local RSN functional connectivity and subcortical gray 

matter volume 

Given the overlap in different clusters of centrality differences in the 3 group comparisons 

(Figure 2), the mean value per participant was extracted of all voxels showing higher or 

lower ECM and lower degree centrality across the group comparisons. This significantly 

reduced the number of statistical tests and prevented selection bias by choosing one 

contrast for higher and one for lower ECM/degree centrality.  

 The results of the voxel-wise analysis between centrality and the secondary visual, 

sensorimotor, left frontal-parietal, ventral attention, and auditory and language RSNs can 

be found in Figure 3. Both lower subcortical/cerebellar ECM and subcortical degree 

centrality were related to higher connectivity in the auditory and language network, 

secondary visual, and sensorimotor networks (all PFWE<0.05; Figure 3). Higher occipital 

ECM was related to higher connectivity in the same networks, although the spatial extent 

of this correlation for the auditory and language network was limited (all PFWE<0.05; 

Figure 3). The mean R2 ranged between 0.30-0.40, indicating that between 30% and 40% 

of the variance is explained by the used model. There were no correlations between 

centrality and the left frontal-parietal or ventral attention networks (all PFWE>0.05). 

Neither ECM, nor degree centrality were related to subcortical gray matter volume 

(all PFDR>0.05). 
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Clinical relevance of centrality alterations 

In all patients, uncorrected for confounding factors and multiple comparisons, higher 

ECM values in the occipital cortices were related to better general cognitive ability 

(β=0.204; P=0.038). This was no longer statistically significant after correction for 

confounding factors and multiple comparisons (PFDR>0.05). There were no correlations 

with other cognitive domains or with degree centrality. 

 Clinically, lower ECM in the subcortical/cerebellar region was related lower age 

(β=0.262; PFDR=0.049), whereas lower ECM in the occipital cortices was related to higher 

age (β=-0.266; PFDR=0.049) and longer diabetes duration (β=-0.283; PFDR=0.049). There 

were no correlations with degree centrality. 
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Discussion 

In this study, we aimed to detect differences in ECM and degree centrality at a voxel level, 

between well-characterized patients with longstanding T1DM with and without 

proliferative retinopathy and controls. We showed that ECM and degree centrality were 

lower in all T1DM patients as one group relative to controls in the thalamus and dorsal 

striatal regions (putamen and caudate nucleus), with lowest values in the group without 

proliferative retinopathy. In these patients versus controls ECM, but not degree centrality, 

was increased in the right cuneus and occipital fusiform gyrus. Comparing patients 

without to patients with proliferative retinopathy this increase was spatially more 

widespread and also found in the left occipital cortex and superior temporal gyrus. Low 

quality signal did not influence these results. Functionally, altered ECM and degree 

centrality were related to altered connectivity in the visual, sensorimotor, and auditory 

and language RSNs, but it was not related to volume of subcortical nuclei or cognition. 

Clinically, increased occipital ECM was related to shorter disease duration and younger 

age. Younger age was also related to decreased subcortical/cerebellar ECM. 

 Centrality analyses, by considering the whole brain as one network, shows which 

regions are relatively more or less central and more connected in the global network. Thus, 

our results indicate that in patients without proliferative retinopathy the thalamus, dorsal 

striatum, cerebellum and brain stem were less central and connected, whereas the bilateral 

occipital cortex was more central and connected within this entire functional brain 

network. Using the same voxel-based ECM approach, lower occipital and higher frontal 

ECM was found in Alzheimer’s disease (Binnewijzend, et al., 2014), and increased 

thalamic and precuneus ECM with decreased occipitotemporal and sensorimotor ECM in 

multiple sclerosis (Schoonheim, et al., 2014). In patients with the human 

immunodeficiency virus ECM remained relatively unaffected, although no voxel-based 



19 

 

approach was used (Thomas, et al., 2015). Degree centrality in patients with type 2 

diabetes was lower in the lingual gyrus, but higher in the insula and anterior cingulate 

cortex (Cui, et al., 2016). 

 Although the effect of lower ECM and degree centrality was robust and spatially 

widespread in patients without proliferative retinopathy, there was only focally increased 

ECM, and no increased degree centrality. As both are a relative approach, increases in 

other regions may have been expected, such as was seen in multiple sclerosis 

(Schoonheim, et al., 2014). Its relative absence may suggest that increased ECM is 

diffusely distributed throughout the network, and thus failed to reach statistical 

significance. In our RSN analysis we previously found increased connectivity within the 

visual and sensorimotor areas in patients without proliferative retinopathy (van 

Duinkerken, et al., 2012), the first spatially overlapping with increased occipital ECM. It 

may suggest that connectivity is rerouted towards a more cortico-cortical flow at the 

expense of the more common thalamo-cortico-thalamic circuit. In the more progressive 

stage of the disease, the normalization of cortically increased RSN connectivity may then 

lead to a normalization of subcortical and cerebellar ECM and degree centrality values. 

Alternatively, early subclinical changes in retinal and peripheral nerve structure and 

function, which have been found previously in patients without clinically manifest 

retinopathy or neuropathy (Almeida, et al., 2008; van Dijk, et al., 2010), may result in 

altered input to the thalamus and dorsal striatum, which in turn may result in lower 

centrality of these structures. Taken together these results suggest an alteration of 

functional gray matter network organization in patients with yet uncomplicated T1DM in 

the absence of extensive gray or white matter damage or cognitive decrements. Centrality 

may thus serve as an early marker of cortical functional reorganization. When assessing 

local RSN functional connectivity in this group of patients we previously showed a 
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similar pattern of alterations between the groups using both resting-state fMRI (van 

Duinkerken, et al., 2012), and magnetoencephalography (Demuru, et al., 2014). This 

supports the hypothesis that functional connectivity in T1DM is a sensitive tool to detect 

cortical reorganization early in the disease. This is further supported by findings of 

functional reorganization in children below the age of 10 years with T1DM, i.e. in those 

with only a short disease duration (Saggar, et al., 2017). This and our previous studies 

also show the limited capacity of functional connectivity analyses to discriminate 

between patients with and without proliferative retinopathy. It seems thus less useful in 

determining disease progression.  

There was a small correlation found between higher occipital ECM and better 

cognitive performance in T1DM patients, but not with subcortical/cerebellar ECM or 

degree centrality, which did not survive FDR-correction. This is in agreement with our 

previous findings showing increased visual RSN connectivity being related to better 

cognition (van Duinkerken, et al., 2012), and an absence of a correlation between 

thalamus or putamen volume and cognition in this group (van Duinkerken, et al., 2014). 

This may suggest that the cognitive decrements in this group are not driven by 

subcortical/cerebellar, but rather by occipital alterations in function. Similar associations 

between occipital ECM values and cognition were also found in Alzheimer’s disease and 

multiple sclerosis (Binnewijzend, et al., 2014; Schoonheim, et al., 2014), possibly 

suggesting altered posterior centrality is important for cognition. 

Decreased ECM in the occipital cortex in the T1DM groups was related to longer 

disease duration and older age, whereas decreased ECM in the subcortical/cerebellar 

regions was related to lower age. As can be seen in Figure 4, these correlations are the 

resultant of combining the groups with and without proliferative retinopathy, as the 

correlation coefficients would not be statistically significant in the groups separately. 
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However, as both groups have the same disease and share the same pathophysiology to 

develop retinopathy (i.e. chronic hyperglycemic exposure) we decided to combine the 

groups and increase the power to identify correlations. 

In our study, ECM and degree centrality were strongly correlated and showed 

substantial overlap in the between-group results. Despite these similarities, only ECM 

showed correlations with cognition and disease variables, which suggests that ECM is 

more sensitive to subtle T1DM-related network architecture alterations than degree 

centrality. How other graph theoretical metrics are affected by T1DM and whether they 

are better capable of detecting disease progression should be determined in future 

studies. 

Increased occipital cortex ECM was related to longer disease duration. However, 

lower subcortical and cerebellar ECM was, similarly to RSN connectivity in this group 

(van Duinkerken, et al., 2012), not related to any diabetes-related factors, but it was 

related to lower age. Degree centrality was not related to any clinical factor. These 

correlations between clinical factors and centrality were relatively low, but in line with 

correlations we have previously found (Demuru, et al., 2014; van Duinkerken, et al., 

2009; van Duinkerken, et al., 2012). This suggests that there are other more prominent 

factors, as mentioned above, that have a stronger relationship with altered centrality. 

Furthermore, that centrality and connectivity alterations are present before the 

development of microvascular complications and are only marginally related to diabetes 

duration, as demonstrated here and in the previous RSN article (van Duinkerken, et al., 

2012), suggests that other factors related to hyperglycemic exposure may be related to 

these alterations. It is known that chronic hyperglycemia leads to a cascade of changes, 

including increased advanced glycation endproduct formation, and increased 
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inflammatory and oxidative stress responses (Brownlee, 2005). Future studies need to 

unravel this. 

Subcortical volume, which we have shown to be lower with respect to controls in 

this patient sample (van Duinkerken, et al., 2014), was not related to the observed 

centrality alterations. This is similar to findings in Alzheimer’s disease, where only 

marginal overlap was seen between altered cortical gray matter volume and ECM 

(Binnewijzend, et al., 2014). On the other hand, we found strong correlations between 

altered ECM and degree centrality values and altered local visual, sensorimotor, and 

auditory and language RSN functional connectivity. In these first 2 networks, 

connectivity was highest in patients without proliferative retinopathy, whereas in the 

latter network connectivity was highest in controls, intermediate in patients without and 

lowest in patients with proliferative retinopathy (van Duinkerken, et al., 2012). These 

networks are comprised of regions homogenous in terms of functions and spatial location, 

with direct afferent and efferent anatomical and functional connections with subcortical 

nuclei (Behrens TE, 2003; Schoonheim, et al., 2014). Functional connectivity of the left 

frontoparietal and ventral attention RSNs were not related to subcortical ECM alterations. 

The relationship between RSN connectivity and the whole-brain functional network is 

still poorly understood and needs further study. However, the networks that did not show 

a correlation are larger in size and comprise multiple areas in different parts of the brain, 

thus being spatially less homogenous than the ones showing a correlation. This may affect 

the correlation with ECM and degree centrality. 

Several limitations of this study should be mentioned. Firstly, patients with 

proliferative retinopathy were oldest, had the highest systolic blood pressure and level of 

depressive symptoms, and the longest disease duration and subsequently the earliest 

disease onset age. Although our main findings were in the other patient group, many of 
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these variables can still confound the results; hence all analyses were corrected for these 

factors, except for diabetes duration and onset age. To control for these factors, we 

repeated the analyses with groups matched for age, diabetes duration and onset age, 

showing similar results. We have included 2 distinct groups of patients, and can therefore 

not extrapolate our results to groups of patients with moderate levels of retinopathy or 

other microvascular complications. We did not regress out motion parameters, as 

previous research has shown that ECM is relatively insensitive to these noise parameters 

(Lohmann, et al., 2010; Wink, et al., 2012), movement in this group was limited, and that 

rigorously removing these noise parameters may actually degrade data quality (Yan, et 

al., 2013). Instead we used scrubbing. Within graph theory, different network sizes can 

account for differences in ECM and degree centrality values between groups. Here 

network size was the same in every participant as the functional scans were non-linearly 

registered to standard space and a common gray matter mask was used. Using this mask 

allowed us to determine ECM and degree centrality in gray matter only, thus regressing 

out white matter and cerebrospinal fluid signal was not necessary. There are different 

approaches to filtering of raw fMRI-signal, with some suggesting no filtering, only high-

pass filtering (common in FSL), and some band-pass filtering (Power, et al., 2015). Until 

now there is no gold standard. We followed FSL’s recommendation to only use a high-

pass filter on fMRI data, as low-pass filtering might introduce artificial correlations in the 

data (Davey, et al., 2013). 

 

Conclusion 

To conclude, we demonstrated that subcortical/cerebellar ECM and degree centrality 

were lower and bilateral occipital ECM higher in T1DM patients without proliferative 

retinopathy. Functionally, this was associated with altered sensorimotor, visual, and 
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auditory and language RSN functional connectivity, but not with volumetric alterations 

in subcortical nuclei or with cognition. It suggests reorganization of cortical connectivity 

pathways in patients without proliferative retinopathy, which is lost with disease 

progression. How these alterations develop over time, their relationship with cognition 

and the underlying mechanisms should be determined in future studies. 

 

Acknowledgments 

This study was supported by grant 2005.00.006 of the Dutch Diabetes Research 

Foundation and a grant from the European Foundation for the Study of Diabetes. EvD 

received a personal grant of the Brazilian National Council for Scientific and 

Technological Development (CNPq). No potential conflicts of interest relevant to this 

manuscript were reported. 

 EvD participated in the design of the study, included participants, performed the 

MRI-scans and neuropsychological assessments, analyzed the data and wrote the 

manuscript. MMS supervised the fMRI preprocessing and Independent Component 

Analysis. RGIJ participated in the design of the study and obtained EFSD funding. ACM 

rated all fundus photographs. JLF provided part of the analysis infrastructure. MK 

participated in the design of the study and supervised the neuropsychological assessment. 

MD was principal investigator of the whole study, obtained DDRF and EFSD funding, 

and participated in the design of this study. FJS participated in the design of this study 

and supervised the psychological measures within the whole study. FB participated in the 

design of the study, supervised MRI data collection and clinically rated all structural MRI 

scans. AMW developed the eigenvector centrality mapping program. All authors, except 

for MD, have critically reviewed the results and have made critical revisions to the 



25 

 

manuscript. EvD and AMW had full access to the data and had final responsibility for the 

decision to submit the manuscript.  



26 

 

References 

Aldington, S.J., Kohner, E.M., Meuer, S., Klein, R., Sjølie, A.K. (1995) Methodology for 

retinal photography and assessment of diabetic retinopathy: the EURODIAB 

IDDM Complications Study. Diabetologia, 38:437-444. 

Almeida, S., Riddell, M.C., Cafarelli, E. (2008) Slower conduction velocity and motor 

unit discharge frequency are associated with muscle fatigue during isometric 

exercise in type 1 diabetes mellitus. Muscle Nerve, 37:231-240. 

Beckmann, C., Mackay, C., Filippini, N., Smith, S. (2009) Group comparison of resting-

state FMRI data using multi-subject ICA and dual regression. NeuroImage, 

47:S39-S41. 

Behrens TE, J.-B.H., Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, 

Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, 

Matthews PM. (2003) Non-invasive mapping of connections between human 

thalamus and cortex using diffusion imaging. Nat Neurosci 6:750-757. 

Binnewijzend, M.A.A., Adriaanse, S.M., Van der Flier, W.M., Teunissen, C.E., de 

Munck, J.C., Stam, C.J., Scheltens, P., van Berckel, B.N.M., Barkhof, F., Wink, 

A.M. (2014) Brain network alterations in Alzheimer's disease measured by 

Eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum 

Brain Mapp, 35:2383-2393. 

Brands, A.M., Biessels, G.J., de Haan, E.H., Kappelle, L.J., Kessels, R.P. (2005) The 

Effects of Type 1 Diabetes on Cognitive Performance: A meta-analysis. Diabetes 

Care, 28:726-735. 

Brownlee, M. (2005) The Pathobiology of Diabetic Complications: a unifying mechanism. 

Diabetes, 54:1615-1625. 

Cui, Y., Li, S.-F., Gu, H., Hu, Y.-Z., Liang, X., Lu, C.-Q., Cai, Y., Wang, C.-X., Yang, 

Y., Teng, G.-J. (2016) Disrupted Brain Connectivity Patterns in Patients with 

Type 2 Diabetes. AJNR Am J Neuroradiol, 37:2115-2122. 

Davey, C.E., Grayden, D.B., Egan, G.F., Johnston, L.A. (2013) Filtering induces 

correlation in fMRI resting state data. NeuroImage, 64:728-740. 

Demuru, M., van Duinkerken, E., Fraschini, M., Marrosu, F., Snoek, F.J., Barkhof, F., 

Klein, M., Diamant, M., Hillebrand, A. (2014) Changes in MEG resting-state 

networks are related to cognitive decline in type 1 diabetes mellitus patients. 

NeuroImage Clinical, 5:69-76. 

Ding, J., Wong, T.Y. (2012) Current Epidemiology of Diabetic Retinopathy and Diabetic 

Macular Edema. Curr Diab Rep, 12:346-354. 

Eijlers, A.J., Meijer, K.A., Wassenaar, T.M., Steenwijk, M.D., Uitdehaag, B.M., Barkhof, 

F., Wink, A.M., Geurts, J.J.G., Schoonheim, M.M. (2017) Increased default-mode 

network centrality in cognitively impaired multiple sclerosis patients. Neurology, 

Epub ahead of print. 

Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., 

Papademetris, X., Constable, R.T. (2015) Functional connectome fingerprinting: 

identifying individuals using patterns of brain connectivity. Nat Neurosci, 

18:1664-1671. 

Jacobson, A.M., Ryan, C.M., Cleary, P.A., Waberski, B.H., Weinger, K., Musen, G., 

Dahms, W. (2011) Biomedical risk factors for decreased cognitive functioning in 

type 1 diabetes: an 18 year follow-up of the Diabetes Control and Complications 

Trial (DCCT) cohort. Diabetologia, 54:245-255. 

Jenkinson, M., Bannister, P., Brady, M., Smith, S. (2002) Improved Optimization for the 

Robust and Accurate Linear Registration and Motion Correction of Brain Images. 

NeuroImage, 17:825-841. 



27 

 

Jenkinson, M., Smith, S. (2001) A global optimisation method for robust affine 

registration of brain images. Med Image Anal, 5:143-156. 

Klein, R., Knudtson, M.D., Lee, K.E., Gangnon, R., Klein, B.E.K. (2008) The Wisconsin 

Epidemiologic Study of Diabetic Retinopathy XXII. Ophthalmology, 115:1859-

1868. 

Kodl, C.T., Franc, D.T., Rao, J.P., Anderson, F.S., Thomas, W., Mueller, B.A., Lim, K.O., 

Seaquist, E.R. (2008) Diffusion Tensor Imaging (DTI) identifies deficits in white 

matter microstructure in subjects with type 1 diabetes mellitus that correlate with 

reduced neurocognitive function. Diabetes, 27:3083-3089. 

Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., 

Schloegl, H., Stumvoll, M., Villringer, A., Turner, R. (2010) Eigenvector 

Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the 

Human Brain. PLoS ONE, 5:doi: 10.1371/journal.pone.0010232. 

Musen, G., Lyoo, I.K., Sparks, C.R., Weinger, K., Hwang, J., Ryan, C.M., Jimerson, D.C., 

Hennen, J., Renshaw, P.F., Jacobson, A.M. (2006) Effects of Type 1 Diabetes on 

Gray Matter Density as Measured by Voxel-Based Morphometry. Diabetes, 

55:326-333. 

Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M. (2011) A Bayesian model of 

shape and appearance for subcortical brain segmentation. NeuroImage, 56:907-

922. 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E. (2012) Spurious 

but systematic correlations in functional connectivity MRI networks arise from 

subject motion. NeuroImage, 59:2142-2154. 

Power, J.D., Schlaggar, B.L., Petersen, S.E. (2015) Recent progress and outstanding 

issues in motion correction in resting state fMRI. NeuroImage, 105:536-551. 

Radloff, L.S. (1977) The CES-D Scale: A Self-Report Depression Scale for Research in 

the General Population. Appl Psychol Meas, 1:385-401. 

Ryan, C.M., van Duinkerken, E., Rosano, C. (2016) Neurocognitive consequences of 

diabetes. Am Psychol, 71:563-576. 

Ryan, J.P., Aizenstein, H.J., Orchard, T.J., Ryan, C.M., Saxton, J.A., Fine, D.F., Nunley, 

K.A., Rosano, C. (2015) Age of Childhood Onset in Type 1 Diabetes and 

Functional Brain Connectivity in Midlife. Psychosom Med, 77:622-630. 

Saggar, M., Tsalikian, E., Mauras, N., Mazaika, P., White, N.H., Weinzimer, S., 

Buckingham, B., Hershey, T., Reiss, A.L. (2017) Compensatory 

Hyperconnectivity in Developing Brains of Young Children With Type 1 

Diabetes. Diabetes, 66:754-762. 

Schoonheim, M., Geurts, J., Wiebenga, O., De Munck, J., Polman, C., Stam, C., Barkhof, 

F., Wink, A. (2014) Changes in functional network centrality underlie cognitive 

dysfunction and physical disability in multiple sclerosis. Mult Scler, 20:1058-

1065. 

Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., De 

Stefano, N. (2002) Accurate, Robust, and Automated Longitudinal and Cross-

Sectional Brain Change Analysis. NeuroImage, 17:479-489. 

Smolina, K., Wotton, C.J., Goldacre, M.J. (2015) Risk of dementia in patients 

hospitalised with type 1 and type 2 diabetes in England, 1998–2011: a 

retrospective national record linkage cohort study. Diabetologia, 58:942-950. 

The Diabetes Control and Complications Trial Research Group. (1996) Effects of 

Intensive Diabetes Therapy on Neuropsychological Function in Adults in the 

Diabetes Control and Complications Trial. Ann Intern Med, 124:379-388. 



28 

 

Thomas, J.B., Brier, M.R., Ortega, M., Benzinger, T.L., Ances, B.M. (2015) Weighted 

brain networks in disease: centrality and entropy in human immunodeficiency 

virus and aging. Neurobiol Aging, 36:401-412. 

van Dijk, H.W., Verbraak, F.D., Kok, P.H.B., Garvin, M.K., Sonka, M., Lee, K., de Vries, 

H., J, Michels, R.P.J., van Velthoven, M.E.J., Schlingemann, R.O., Abramoff, 

M.D. (2010) Decreased Retinal Ganglion Cell Layer Thickness in Patients with 

Type 1 Diabetes. Invest Ophthalmol Vis Sci, 51:3660-3665. 

van Duinkerken, E., Klein, M., Schoonenboom, N.S., Hoogma, R.P., Moll, A.C., Snoek, 

F.J., Stam, C.J., Diamant, M. (2009) Functional Brain Connectivity and 

Neurocognitive Functioning in Patients with Longstanding Type 1 Diabetes 

Mellitus with and without Microvascular Complications: a 

Magnetoencephalography Study. Diabetes, 58:2335-2343. 

van Duinkerken, E., Ryan, C.M., Schoonheim, M.M., Barkhof, F., Klein, M., Moll, A.C., 

Diamant, M., IJzerman, R.G., Snoek, F.J. (2016) Subgenual Cingulate Cortex 

Functional Connectivity in Relation to Depressive Symptoms and Cognitive 

Functioning in Type 1 Diabetes Mellitus Patients. Psychosom Med, 78:740-749. 

van Duinkerken, E., Schoonheim, M.M., Sanz-Arigita, E.J., IJzerman, R.G., Moll, A.C., 

Snoek, F.J., Ryan, C.M., Klein, M., Diamant, M., Barkhof, F. (2012) Resting-state 

brain networks in type 1 diabetes patients with and without microangiopathy and 

their relation with cognitive functions and disease variables. Diabetes, 61:1814-

1821. 

van Duinkerken, E., Schoonheim, M.M., Steenwijk, M.D., Klein, M., Ijzerman, R.G., 

Moll, A.C., Heijmans, M.W., Snoek, F.J., Barkhof, F., Diamant, M. (2014) 

Ventral striatum, but not cortical volume loss is related to cognitive dysfunction 

in type 1 diabetes patients with and without microangiopathy. Diabetes Care, 

37:2483-2490. 

van Wijk, B.C.M., Stam, C.J., Daffertshofer, A. (2010) Comparing Brain Networks of 

Different Size and Connectivity Density Using Graph Theory. PLoS ONE, 5:doi: 

10.1371/journal.pone.0013701. 

Wessels, A.M., Scheltens, P., Barkhof, F., Heine, R.J. (2008) Hyperglycaemia as a 

determinant of cognitive decline in patients with type 1 diabetes. Eur J Pharmacol, 

585:88-96. 

Wink, A.M., de Munck, J.C., van der Werf, Y.D., van den Heuvel, O.A., Barkhof, F. 

(2012) Fast Eigenvector Centrality Mapping of Voxel-Wise Connectivity in 

Functional Magnetic Resonance Imaging: Implementation, Validation, and 

Interpretation. Brain Connect, 2:265-274. 

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E. (2014) 

Permutation inference for the general linear model. NeuroImage, 92:381-397. 

Winkler, A.M., Webster, M.A., Brooks, J.C., Tracey, I., Smith, S.M., Nichols, T.E. 

(2016) Non-parametric combination and related permutation tests for 

neuroimaging. Hum Brain Mapp, 37:1486-1511. 

Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R.C., Di Martino, A., Li, Q., 

Zuo, X.-N., Castellanos, F.X., Milham, M.P. (2013) A comprehensive assessment 

of regional variation in the impact of head micromovements on functional 

connectomics. NeuroImage, 76:183-201. 

  



29 

 

Figure 1. The common gray matter mask is shown in the top panel in yellow. Mean 

eigenvector centrality and degree centrality maps of all controls and patients, and 

separately the patients without and with proliferative retinopathy are given. Red and 

yellow colors indicate high centrality values, whereas blue colors indicate low centrality 

values. DegCM = degree centrality. ECM = eigenvector centrality mapping. T1DM = 

type 1 diabetes. Images are presented in radiological orientation. 

 

Figure 2. Clusters where eigenvector centrality and degree centrality values were 

different between groups. Results are presented on the 4 mm isotropic voxels MNI152 

standard brain in radiological orientation. Represented are t-values of the voxels that 

statistically significantly differed at PFWE<0.05. The blue color indicates lower t-values 

in the group that is mentioned last, red/yellow indicates higher t-values in this group. The 

1st and 3rd column represent the normal analysis, the 2nd and 4th column show the results 

of the analysis after removal of low quality signal. In the matched analysis 27 patients 

with proliferative retinopathy were included (11 men [40.7%]; mean age: 41.9±7.8; mean 

diabetes duration: 29.0±5.7; mean diabetes onset age: 12.9±7.5). The group of patients 

without proliferative retinopathy included 29 participants (9 men [31.0%]; mean age: 

40.3±8.9; mean diabetes duration: 27.7±8.2; mean diabetes onset age: 12.7±8.4). These 

groups were compared with 38 controls (15 men [39.5%]; mean age: 40.8±9.0). 

 

Figure 3. Schematic representation of the correlation between lower subcortical degree 

centrality, lower subcortical/cerebellar ECM, and higher occipital ECM and local 

functional connectivity in the auditory and language, secondary visual and sensorimotor 

RSNs in all T1DM patients. The top shows in green the RSN networks thresholded at 

z<3.9, overlaid on a 4 mm standard brain. The voxels showing statistically significant 
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correlations between centrality and functional connectivity were thresholded at 

PFWE<0.05. The correlation coefficient was calculated as the R2 for the model of centrality, 

corrected for age, sex, systolic blood pressure, and depressive symptoms. Lighter blue 

colors indicate higher negative R2-values, whereas more yellow colors indicate higher 

positive R2-values. ECM = eigenvector centrality mapping, T1DM = type 1 diabetes. 

 

Figure 4. Scatter plots of the association between eigenvector centrality, age, and diabetes 

duration. The gray squares represent the patients without proliferative retinopathy and the 

black circles depict the patients with proliferative retinopathy. The solid black line 

indicates the regression line for all type 1 diabetes patients. Gray dashed lines represent 

the regression line of the patients without proliferative retinopathy and dashed black lines 

those of the patients with proliferative retinopathy. 
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