62 research outputs found

    Performance of Small Cluster Surveys and the Clustered LQAS Design to estimate Local-level Vaccination Coverage in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required.</p> <p>Methods</p> <p>We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A.</p> <p>Results</p> <p>VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans.</p> <p>Conclusions</p> <p>Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.</p

    Evolution of protein domain architectures

    Get PDF
    This chapter reviews current research on how protein domain architectures evolve. We begin by summarizing work on the phylogenetic distribution of proteins, as this will directly impact which domain architectures can be formed in different species. Studies relating domain family size to occurrence have shown that they generally follow power law distributions, both within genomes and larger evolutionary groups. These findings were subsequently extended to multi-domain architectures. Genome evolution models that have been suggested to explain the shape of these distributions are reviewed, as well as evidence for selective pressure to expand certain domain families more than others. Each domain has an intrinsic combinatorial propensity, and the effects of this have been studied using measures of domain versatility or promiscuity. Next, we study the principles of protein domain architecture evolution and how these have been inferred from distributions of extant domain arrangements. Following this, we review inferences of ancestral domain architecture and the conclusions concerning domain architecture evolution mechanisms that can be drawn from these. Finally, we examine whether all known cases of a given domain architecture can be assumed to have a single common origin (monophyly) or have evolved convergently (polyphyly). We end by a discussion of some available tools for computational analysis or exploitation of protein domain architectures and their evolution

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Investigating large-scale brain dynamics using field potential recordings: Analysis and interpretation

    Get PDF
    New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (EEG, MEG, ECoG and LFP) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide best-practice recommendations for the analyses and interpretations using a forward model and an inverse model. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems

    Identification of Eimeria mitis and Eimeria praecox in broiler feces using polymerase chain reaction

    No full text
    There are few reports concerning the epidemiology of Eimeria praecox and Eimeria mitis in Brazil. In the present experiment, the polymerase chain reaction (PCR) was used to identify these species in 156 samples of broiler chicken feces from several Brazilian states and the Federal District. Oocysts present in feces samples were purified by sodium chloride flotation followed by addition of DNAzol reagent (Invitrogen®) for extraction of genomic DNA. DNA was precipitated and stored following DNAzol reagent manufacture's instructions. The primers and PCR conditions were as described by Schnitzler et al. (1999). In the 156 field samples analyzed by PCR, 70 and 45 were positive for E. praecox and E. mitis, respectively. In this study we have shown that DNA extraction using DNAzol followed by PCR can be a useful tool in epidemiological studies, since it provides fast and reliable detection of Eimeria sp. in field samples
    corecore