109 research outputs found
Performance of Small Cluster Surveys and the Clustered LQAS Design to estimate Local-level Vaccination Coverage in Mali
<p>Abstract</p> <p>Background</p> <p>Estimation of vaccination coverage at the local level is essential to identify communities that may require additional support. Cluster surveys can be used in resource-poor settings, when population figures are inaccurate. To be feasible, cluster samples need to be small, without losing robustness of results. The clustered LQAS (CLQAS) approach has been proposed as an alternative, as smaller sample sizes are required.</p> <p>Methods</p> <p>We explored (i) the efficiency of cluster surveys of decreasing sample size through bootstrapping analysis and (ii) the performance of CLQAS under three alternative sampling plans to classify local VC, using data from a survey carried out in Mali after mass vaccination against meningococcal meningitis group A.</p> <p>Results</p> <p>VC estimates provided by a 10 × 15 cluster survey design were reasonably robust. We used them to classify health areas in three categories and guide mop-up activities: i) health areas not requiring supplemental activities; ii) health areas requiring additional vaccination; iii) health areas requiring further evaluation. As sample size decreased (from 10 × 15 to 10 × 3), standard error of VC and ICC estimates were increasingly unstable. Results of CLQAS simulations were not accurate for most health areas, with an overall risk of misclassification greater than 0.25 in one health area out of three. It was greater than 0.50 in one health area out of two under two of the three sampling plans.</p> <p>Conclusions</p> <p>Small sample cluster surveys (10 × 15) are acceptably robust for classification of VC at local level. We do not recommend the CLQAS method as currently formulated for evaluating vaccination programmes.</p
Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: a survey in Southwest Uganda.
BACKGROUND: Quantification of human interactions relevant to infectious disease transmission through social contact is central to predict disease dynamics, yet data from low-resource settings remain scarce. METHODS: We undertook a social contact survey in rural Uganda, whereby participants were asked to recall details about the frequency, type, and socio-demographic characteristics of any conversational encounter that lasted for ≥5 min (henceforth defined as 'contacts') during the previous day. An estimate of the number of 'casual contacts' (i.e. < 5 min) was also obtained. RESULTS: In total, 566 individuals were included in the study. On average participants reported having routine contact with 7.2 individuals (range 1-25). Children aged 5-14 years had the highest frequency of contacts and the elderly (≥65 years) the fewest (P < 0.001). A strong age-assortative pattern was seen, particularly outside the household and increasingly so for contacts occurring further away from home. Adults aged 25-64 years tended to travel more often and further than others, and males travelled more frequently than females. CONCLUSION: Our study provides detailed information on contact patterns and their spatial characteristics in an African setting. It therefore fills an important knowledge gap that will help more accurately predict transmission dynamics and the impact of control strategies in such areas
Phase transitions in contagion processes mediated by recurrent mobility patterns
Human mobility and activity patterns mediate contagion on many levels,
including the spatial spread of infectious diseases, diffusion of rumors, and
emergence of consensus. These patterns however are often dominated by specific
locations and recurrent flows and poorly modeled by the random diffusive
dynamics generally used to study them. Here we develop a theoretical framework
to analyze contagion within a network of locations where individuals recall
their geographic origins. We find a phase transition between a regime in which
the contagion affects a large fraction of the system and one in which only a
small fraction is affected. This transition cannot be uncovered by continuous
deterministic models due to the stochastic features of the contagion process
and defines an invasion threshold that depends on mobility parameters,
providing guidance for controlling contagion spread by constraining mobility
processes. We recover the threshold behavior by analyzing diffusion processes
mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary
Information; Nature Physics (2011
Detection of infectious disease outbreaks in twenty-two fragile states, 2000-2010: a systematic review.
Fragile states are home to a sixth of the world's population, and their populations are particularly vulnerable to infectious disease outbreaks. Timely surveillance and control are essential to minimise the impact of these outbreaks, but little evidence is published about the effectiveness of existing surveillance systems. We did a systematic review of the circumstances (mode) of detection of outbreaks occurring in 22 fragile states in the decade 2000-2010 (i.e. all states consistently meeting fragility criteria during the timeframe of the review), as well as time lags from onset to detection of these outbreaks, and from detection to further events in their timeline. The aim of this review was to enhance the evidence base for implementing infectious disease surveillance in these complex, resource-constrained settings, and to assess the relative importance of different routes whereby outbreak detection occurs.We identified 61 reports concerning 38 outbreaks. Twenty of these were detected by existing surveillance systems, but 10 detections occurred following formal notifications by participating health facilities rather than data analysis. A further 15 outbreaks were detected by informal notifications, including rumours.There were long delays from onset to detection (median 29 days) and from detection to further events (investigation, confirmation, declaration, control). Existing surveillance systems yielded the shortest detection delays when linked to reduced barriers to health care and frequent analysis and reporting of incidence data.Epidemic surveillance and control appear to be insufficiently timely in fragile states, and need to be strengthened. Greater reliance on formal and informal notifications is warranted. Outbreak reports should be more standardised and enable monitoring of surveillance systems' effectiveness
Measles in Democratic Republic of Congo: an outbreak description from Katanga, 2010--2011
BACKGROUND: The Democratic Republic of Congo experiences regular measles outbreaks. From September 2010, the number of suspected measles cases increased, especially in Katanga province, where Medecins sans Frontieres supported the Ministry of Health in responding to the outbreak by providing free treatment, reinforcing surveillance and implementing non-selective mass vaccination campaigns. Here, we describe the measles outbreak in Katanga province in 2010--2011 and the results of vaccine coverage surveys conducted after the mass campaigns. METHODS: The surveillance system was strengthened in 28 of the 67 health zones of the province and we conducted seven vaccination coverage surveys in 2011. RESULTS: The overall cumulative attack rate was 0.71% and the case fatality ratio was 1.40%.The attack rate was higher in children under 4 and decreased with age. This pattern was consistent across districts and time. The number of cases aged 10 years and older barely increased during the outbreak. CONCLUSIONS: Early investigation of the age distribution of cases is a key to understanding the epidemic, and should guide the vaccination of priority age groups
Randomized, double-blinded, controlled non-inferiority trials evaluating the immunogenicity and safety of fractional doses of Yellow Fever vaccines in Kenya and Uganda
Introduction: Yellow fever is endemic in specific regions of sub-Saharan Africa and the Americas, with recent epidemics occurring on both continents. The yellow fever vaccine is effective, affordable and safe, providing life-long immunity following a single dose vaccination. However, the vaccine production process is slow and cannot be readily scaled up during epidemics. This has led the World Health Organization (WHO) to recommend the use of fractional doses as a dose-sparing strategy during epidemics, but there are no randomized controlled trials of fractional yellow fever vaccine doses in Africa. Methods and analysis: We will recruit healthy adult volunteers, adults living with HIV, and children to a series of randomized controlled trials aiming to determine the immunogenicity and safety of fractional vaccine doses in comparison to the standard vaccine dose. The trials will be conducted across two sites; Kilifi, Kenya and Mbarara, Uganda. Recruited participants will be randomized to receive fractional or standard doses of yellow fever vaccine. Scheduled visits will include blood collection for serum and peripheral blood mononuclear cells (PBMCs) before vaccination and on various days – up to 2 years – post-vaccination. The primary outcome is the rate of seroconversion as measured by the plaque reduction neutralization test (PRNT50) at 28 days post-vaccination. Secondary outcomes include antibody titre changes, longevity of the immune response, safety assessment using clinical data, the nature and magnitude of the cellular immune response and post-vaccination control of viremia by vaccine dose. Ethics and dissemination: The clinical trial protocols have received approval from the relevant institutional ethics and regulatory review committees in Kenya and Uganda, and the WHO Ethics Review Committee. The research findings will be disseminated through open-access publications and presented at relevant conferences and workshops. Registration: ClinicalTrials.gov NCT02991495 (registered on 13 December 2016) and NCT04059471 (registered on 15 August 2019)
Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm
Background
Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches.
Methods
We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability.
Results
Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model.
Conclusions
Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models
The prevalence of diabetes and prediabetes in the adult population of Jeddah, Saudi Arabia- a community-based survey
BACKGROUND:
Type 2 (T2DM) is believed to be common in Saudi Arabia, but data are limited. In this population survey, we determined the prevalence of T2DM and prediabetes.
MATERIALS AND METHODS:
A representative sample among residents aged ≥ 18 years of the city of Jeddah was obtained comprising both Saudi and non-Saudi families (N = 1420). Data on dietary, clinical and socio-demographic characteristics were collected and anthropometric measurements taken. Fasting plasma glucose and glycated hemoglobin (HbA1c) were used to diagnose diabetes and prediabetes employing American Diabetes Association criteria. Multiple logistic regression analysis was used to identify factors associated with T2DM.
RESULTS:
Age and sex standardized prevalence of prediabetes was 9.0% (95% CI 7.5-10.5); 9.4% (7.1-11.8) in men and 8.6% (6.6-10.6) in women. For DM it was 12.1% (10.7-13.5); 12.9% (10.7-13.5) in men and 11.4% (9.5-13.3) in women. The prevalence based on World Population as standard was 18.3% for DM and 11.9% for prediabetes. The prevalence of DM and prediabetes increased with age. Of people aged ≥50 years 46% of men and 44% of women had DM. Prediabetes and DM were associated with various measures of adiposity. DM was also associated with and family history of dyslipidemia in women, cardiovascular disease in men, and with hypertension, dyslipidemia and family history of diabetes in both sexes.
DISCUSSION:
Age was the strongest predictor of DM and prediabetes followed by obesity. Of people aged 50 years or over almost half had DM and another 10-15% had prediabetes leaving only a small proportion of people in this age group with normoglycemia. Since we did not use an oral glucose tolerance test the true prevalence of DM and prediabetes is thus likely to be even higher than reported here. These results demonstrate the urgent need to develop primary prevention strategies for type 2 diabetes in Saudi Arabia
Controlling Pandemic Flu: The Value of International Air Travel Restrictions
BACKGROUND: Planning for a possible influenza pandemic is an extremely high priority, as social and economic effects of an unmitigated pandemic would be devastating. Mathematical models can be used to explore different scenarios and provide insight into potential costs, benefits, and effectiveness of prevention and control strategies under consideration. METHODS AND FINDINGS: A stochastic, equation-based epidemic model is used to study global transmission of pandemic flu, including the effects of travel restrictions and vaccination. Economic costs of intervention are also considered. The distribution of First Passage Times (FPT) to the United States and the numbers of infected persons in metropolitan areas worldwide are studied assuming various times and locations of the initial outbreak. International air travel restrictions alone provide a small delay in FPT to the U.S. When other containment measures are applied at the source in conjunction with travel restrictions, delays could be much longer. If in addition, control measures are instituted worldwide, there is a significant reduction in cases worldwide and specifically in the U.S. However, if travel restrictions are not combined with other measures, local epidemic severity may increase, because restriction-induced delays can push local outbreaks into high epidemic season. The per annum cost to the U.S. economy of international and major domestic air passenger travel restrictions is minimal: on the order of 0.8% of Gross National Product. CONCLUSIONS: International air travel restrictions may provide a small but important delay in the spread of a pandemic, especially if other disease control measures are implemented during the afforded time. However, if other measures are not instituted, delays may worsen regional epidemics by pushing the outbreak into high epidemic season. This important interaction between policy and seasonality is only evident with a global-scale model. Since the benefit of travel restrictions can be substantial while their costs are minimal, dismissal of travel restrictions as an aid in dealing with a global pandemic seems premature
Does the Effectiveness of Control Measures Depend on the Influenza Pandemic Profile?
BACKGROUND: Although strategies to contain influenza pandemics are well studied, the characterization and the implications of different geographical and temporal diffusion patterns of the pandemic have been given less attention. METHODOLOGY/MAIN FINDINGS: Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles exhibiting different characteristics notably in terms of global burden (from 415 to >160 million of cases) and duration (from 26 to 360 days). A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination) correlated strongly with pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while travel restriction was the only measure without any measurable effect in either. CONCLUSIONS: our study highlights: (i) the great heterogeneity in possible profiles of a future influenza pandemic; (ii) the value of being well prepared in every country since a pandemic may have heavy consequences wherever and whenever it starts; (iii) the need to quickly implement control measures and even to anticipate pandemic emergence through pre-pandemic vaccination; and (iv) the value of combining all available control measures except perhaps travel restrictions
- …
